MATH 203 Introduction to Probability Select Term:
Counting techniques, combinatorial methods, random experiments, sample spaces, events, probability axioms, some rules of probability, conditional probability, independence, Bayes' theorem, random variables (r.v.'s), probability distributions, discrete and continuous r.v.'s, probability density functions, multivariate distributions, marginal and conditional distributions, expected values, moments, Chebyshev's theorem, product moments, moments of linear combinations of r.v.'s, special discrete distributions, uniform, Bernouilli, binomial, negative binomial, geometric, hypergeoemtric and Poisson distributions, special probability densities, uniform, gamma, exponential and normal densities, normal approximation to binomial, distribution of functions of r.v.'s, distribution function and moment-generating function techniques, distribution of the mean, law of large numbers, the central limit theorem.
SU Credits : 3.000
ECTS Credit : 6.000
Prerequisite : Undergraduate level MATH 102 Minimum Grade of D
Corequisite : MATH 203