Course Catalog
| MATH 555 Proofs from the Notebook | 3 Credits | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| The aim of this course is to introduce a selection of proofs of some important theorems. These proofs require moderate background but high ingenuity. Among the topics are: Division algorithm, prime factorization theorem, some primitive results on the distribution of primes. Greatest common divisor. Euler's totient function. Phytagorean triples. A short survey of metric spaces; continuity, compactness, connectedness. Stone- Weierstrass approximation theorem. Geometry of the sphere. Brouwer fixed point theorem. Borsuk's antipodal mapping theorem. | |||||||||||||
|
|||||||||||||
| Prerequisite: __ | |||||||||||||
| Corequisite: __ | |||||||||||||
| ECTS Credit: 10 ECTS (ENGINEERING: / BASIC:) | |||||||||||||
| General Requirements: | |||||||||||||