Theoretical analysis of the chemistry and physics of process technologies used in micro-electronics fabrication. Topics include semiconductor growth, material characterization, lithography tools, photo-resist models, thin film deposition, chemical etching, plasma etching, electrical contact formation, microstructure processing and process modeling.
Semiconductor Process Technology (EE 533)
Programs\Type | Required | Core Elective | Area Elective |
Computer Science and Engineering - With Bachelor's Degree | * | ||
Computer Science and Engineering - With Master's Degree | * | ||
Computer Science and Engineering - With Thesis | * | ||
Cyber Security - With Bachelor's Degree | * | ||
Cyber Security - With Master's Degree | * | ||
Cyber Security - With Thesis | * | ||
Data Science - With Thesis | * | ||
Electronics Engineering and Computer Science - With Bachelor's Degree | * | ||
Electronics Engineering and Computer Science - With Master's Degree | * | ||
Electronics Engineering and Computer Science - With Thesis | * | ||
Electronics Engineering - With Bachelor's Degree | * | ||
Electronics Engineering - With Master's Degree | * | ||
Electronics Engineering - With Thesis | * | ||
Energy Technologies and Management-With Thesis | * | ||
Industrial Engineering - With Bachelor's Degree | * | ||
Industrial Engineering - With Master's Degree | * | ||
Industrial Engineering - With Thesis | * | ||
Leaders for Industry Biological Sciences and Bioengineering - Non Thesis | * | ||
Leaders for Industry Computer Science and Engineering - Non Thesis | * | ||
Leaders for Industry Electronics Engineering and Computer Science - Non Thesis | * | ||
Leaders for Industry Electronics Engineering - Non Thesis | * | ||
Leaders for Industry Industrial Engineering - Non Thesis | * | ||
Leaders for Industry Materials Science and Engineering - Non Thesis | * | ||
Leaders for Industry Mechatronics Engineering - Non Thesis | * | ||
Manufacturing Engineering - Non Thesis | * | ||
Manufacturing Engineering - With Bachelor's Degree | * | ||
Manufacturing Engineering - With Master's Degree | * | ||
Manufacturing Engineering - With Thesis | * | ||
Materials Science and Nano Engineering-(Pre:Materials Science and Engineering) | * | ||
Materials Science and Nano Engineering-(Pre:Materials Science and Engineering) | * | ||
Materials Science and Nano Engineering - With Thesis (Pre.Name: Materials Science and Engineering) | * | ||
Mathematics - With Bachelor's Degree | * | ||
Mathematics - With Master's Degree | * | ||
Mathematics - With Thesis | * | ||
Mechatronics Engineering - With Bachelor's Degree | * | ||
Mechatronics Engineering - With Master's Degree | * | ||
Mechatronics Engineering - With Thesis | * | ||
Molecular Biology, Genetics and Bioengineering (Prev. Name: Biological Sciences and Bioengineering) | * | ||
Molecular Biology, Genetics and Bioengineering-(Prev. Name: Biological Sciences and Bioengineering) | * | ||
Molecular Biology,Genetics and Bioengineering-With Thesis (Pre.Name:Biological Sciences and Bioeng.) | * | ||
Physics - Non Thesis | * | ||
Physics - With Bachelor's Degree | * | ||
Physics - With Master's Degree | * | ||
Physics - With Thesis | * |
CONTENT
OBJECTIVE
A detailed analysis of semiconductor processing technologies that form the basis for the physical realization of all semiconductor based device applications; from the realization of very large and ultra scale integrated circuits (VLSICs, ULSICs) and complex system-on-chip (SoC) application specific integrated circuits (ASICs) to individual device research and development in photonics, photonic integrated circuits (PICs), micro-electro-mechanical-systems (MEMS), etc. The primary objective of this course is to provide students with the fundamental understanding of standard unit processes involved in microfabrication, enforcing their experience with implementation projects in a microfabrication laboratory, and providing familiarity with basic microfabrication tools. Although considerable focus will be given to Si-based microfabrication technologies, primarily because of its dominance in microelectronic industry today, the course material will be enriched with the cutting-edge compound semiconductor technologies (specifically GaAs/AlGaAs and InP/InGaAsP technologies) to provide a sound foundation for general semiconductor based fabrication, research and development.
LEARNING OUTCOMES
- Develop a working knowledge of the unit processes involved in IC fabrication
- Learning the real structures of various semiconductor devices and the process flows for their physical realization
- understanding the reasons for layout rules in VLSI design
- Gaining hands-on experience in clean room
- Obtaining an overall understanding of the roadmap of the semiconductor industry
Update Date:
ASSESSMENT METHODS and CRITERIA
Percentage (%) | |
Final | 35 |
Midterm | 30 |
Written Report | 35 |
RECOMENDED or REQUIRED READINGS
Textbook |
S.A. Campbell, The Science and Engineering of Microelectronic Fabrication, Oxford University Press |
Readings |
R. C. Jaeger, Introduction to Microelectronic Fabrication |