Advanced CAD/CAM applications, which are used in metal cutting industry, will be covered with the theoretical and practical aspects. The topics covered during the lectures will be applied through homeworks and a course project. Techniques for analytical surfaces representation and modeling, surface creation techniques in CAD environment, theoretical aspects of toolpath computation for 3 and 5 axis milling, 3 and 5 axis milling toolpath computation operations offered by commercial CAM packages, theoretical and practical aspects of post processing issues for 3 and 5 axis milling will be covered. Process modeling for simulation and verification of 3 and 5 axis milling processes will be covered. Project groups will select sample geometries requiring 3 and 5 axis milling. Then, they will prepare operations for machining of these sample parts using commercially available Siemens NX and CATIA packages to manufacture the selected parts on the 5-axis machine tool available in Manufacturing Research Laboratory or on the 6- axis machining robots available at SU-IMC.
Multi-axis Machining (MFG 568)
Programs\Type | Required | Core Elective | Area Elective |
MA-European Studies | |||
MA-European Studies-Non Thesis | |||
MA-Political Science | |||
MA-Political Science-Non Thes | |||
MA-Visual Arts&Vis. Com Des-NT | |||
MA-Visual Arts&Visual Com Des | |||
MS-Bio. Sci. & Bioeng. LFI | |||
MS-Bio. Sci. & Bioeng. LFI-ENG | |||
MS-Biological Sci&Bioeng. | * | ||
MS-Computer Sci.&Eng. LFI | |||
MS-Computer Sci.&Eng. LFI-ENG | |||
MS-Computer Science and Eng. | * | ||
MS-Cyber Security(with thesis) | * | ||
MS-Data Science | |||
MS-Elec. Eng&Comp Sc.LFI-ENG | |||
MS-Electronics Eng&Comp Sc.LFI | |||
MS-Electronics Eng&Computer Sc | * | ||
MS-Electronics Eng. | * | ||
MS-Electronics Eng. LFI | |||
MS-Electronics Eng. LFI-ENG | |||
MS-Energy Techno.&Man. | * | ||
MS-Industrial Eng. LFI-ENG | |||
MS-Industrial Engineering | * | ||
MS-Industrial Engineering LFI | |||
MS-Manufacturing Eng-Non Thes | * | ||
MS-Manufacturing Engineering | * | ||
MS-Materials Sci & Engineering | * | ||
MS-Materials Sci. & Eng. LFI | |||
MS-Materials Sci.&Eng. LFI-ENG | |||
MS-Mathematics | |||
MS-Mechatronics | * | ||
MS-Mechatronics LFI | |||
MS-Mechatronics LFI-ENG | |||
MS-Physics | |||
MS-Physics-Non Thesis | * | ||
MS-Psychology | |||
MS-Psychology-Non Thesis | |||
PHD-Biological Sci&Bioeng. | * | ||
PHD-Comp. Sci and Eng.after UG | * | ||
PHD-Computer Science and Eng. | * | ||
PHD-Cyber Security | * | ||
PHD-Electronics Eng&ComputerSc | * | ||
PHD-Electronics Eng. | * | ||
PHD-Electronics Eng. after UG | * | ||
PHD-Experimental Psychology | |||
PHD-Industrial Engineering | * | ||
PHD-Management | |||
PHD-Manufacturing Eng after UG | * | ||
PHD-Manufacturing Engineering | * | ||
PHD-Materials Sci.&Engineering | * | ||
PHD-Mathematics | |||
PHD-Mechatronics | * | ||
PHD-Mechatronics after UG | * | ||
PHD-Physics | |||
PHD-Physics after UG | |||
PHD-Social Psychology | |||
PHDBIO after UG | * | ||
PHDCYSEC after UG | * | ||
PHDEECS after UG | * | ||
PHDEPSY after UG | |||
PHDIE after UG | * | ||
PHDMAN after UG | |||
PHDMAN after UG-Finance | |||
PHDMAN after UG-Man. and Org. | |||
PHDMAN after UG-Op.&Sup. Cha. | |||
PHDMAN-Finance Area | |||
PHDMAN-Man. and Org. Area | |||
PHDMAN-Op. & Supp. Chain Area | |||
PHDMAT after UG | * | ||
PHDMATH after UG | |||
PHDSPSY after UG |
CONTENT
OBJECTIVE
? Represent curves and surface analytically
? Generate curves and surfaces in CAD environment
? Prepare machining tool path operations in CAM environment
? Perform post-processing to the tool path generated in workpiece coordinate systems
? Describe and model generalized milling tool geometry
? Describe and model geometry of a multi-axis ball-end milling process
? Describe the advantages of using computers in NC tool path generation
? Select appropriate milling strategies for a part to be manufactured
? Select appropriate CNC machine tool configuration for a part to be manufactured
? Prepare technical drawings for multi-axis milling processes
LEARNING OUTCOME
-Understanding of the theoretical background of free-form surface representation used in product design.
- Presenting their project work
- Undertake representative machining task as part of their group project. Selection of cutting tools, CNC programming and realizing the required machining process to manufacture a desired part.
- Understanding of the theoretical background of tool path planning for complex parts.
- Understanding of the theoretical background of tool path computation for complex parts.
- Understanding of the theoretical background of tool path computation for post-processing.
- The students will use industrial CAD/CAM software packages. They will learn how to deal with different file formats in CAD/CAM environment.
Understanding of tool selection in multi-axis machining applications.
Update Date:
ASSESSMENT METHODS and CRITERIA
Percentage (%) | |
Final | 30 |
Midterm | 15 |
Case Study | 20 |
Participation | 5 |
Individual Project | 15 |
Homework | 15 |
RECOMENDED or REQUIRED READINGS
Textbook |
1) Choi, B. K., & Jerard, R. B. (2012). Sculptured surface machining: theory and applications. Springer Science & Business Media. |