This course first provides introduction to key concepts of metrology (science of measurement) such as traceability, uncertainty, accuracy, calibration, world metrology systems and accreditation. Then the focus is production- related metrology mainly based on dimensional measurement applications such as displacement, flatness and gauge block interferometric-mechanical measurements, diameter, form and surface texture standards measurements, scale and displacement sensor calibrations, coordinate metrology (CMMs), in-process measurements, optical tooling, nanometrology (atomic scale measurements), machine tool metrology, angle metrology and uncertainty calculations. Principles for precision engineering applications will also be covered including preliminary errors in dimensional metrology and motion mechanism , Abbe principle and applications conforming this principle and self- elimination/separation of errors, metrology loop , influence of temperature, force and vibration in dimensional measurements and precautions for precision engineering to lower the uncertainty of measurements. Laboratory exercises will be carried out with selected examples such as calibration of CNC machine tools using laser interferometers, effective use of reference standards for manufacturing and angular axis calibration of rotary tables using optical components and non-contact measurement equipment.
Manufacturing Metrology (MFG 511)
Programs\Type | Required | Core Elective | Area Elective |
MA-European Studies | |||
MA-European Studies-Non Thesis | |||
MA-Political Science | |||
MA-Political Science-Non Thes | |||
MA-Visual Arts&Vis. Com Des-NT | |||
MA-Visual Arts&Visual Com Des | |||
MS-Bio. Sci. & Bioeng. LFI | |||
MS-Bio. Sci. & Bioeng. LFI-ENG | |||
MS-Biological Sci&Bioeng. | * | ||
MS-Computer Sci.&Eng. LFI | |||
MS-Computer Sci.&Eng. LFI-ENG | |||
MS-Computer Science and Eng. | * | ||
MS-Cyber Security(with thesis) | * | ||
MS-Data Science | |||
MS-Elec. Eng&Comp Sc.LFI-ENG | |||
MS-Electronics Eng&Comp Sc.LFI | |||
MS-Electronics Eng&Computer Sc | * | ||
MS-Electronics Eng. | * | ||
MS-Electronics Eng. LFI | |||
MS-Electronics Eng. LFI-ENG | |||
MS-Energy Techno.&Man. | * | ||
MS-Industrial Eng. LFI-ENG | |||
MS-Industrial Engineering | * | ||
MS-Industrial Engineering LFI | |||
MS-Manufacturing Eng-Non Thes | * | ||
MS-Manufacturing Engineering | * | ||
MS-Materials Sci & Engineering | * | ||
MS-Materials Sci. & Eng. LFI | |||
MS-Materials Sci.&Eng. LFI-ENG | |||
MS-Mathematics | |||
MS-Mechatronics | * | ||
MS-Mechatronics LFI | |||
MS-Mechatronics LFI-ENG | |||
MS-Physics | |||
MS-Physics-Non Thesis | * | ||
MS-Psychology | |||
MS-Psychology-Non Thesis | |||
PHD-Biological Sci&Bioeng. | * | ||
PHD-Comp. Sci and Eng.after UG | * | ||
PHD-Computer Science and Eng. | * | ||
PHD-Cyber Security | * | ||
PHD-Electronics Eng&ComputerSc | * | ||
PHD-Electronics Eng. | * | ||
PHD-Electronics Eng. after UG | * | ||
PHD-Experimental Psychology | |||
PHD-Industrial Engineering | * | ||
PHD-Management | |||
PHD-Manufacturing Eng after UG | * | ||
PHD-Manufacturing Engineering | * | ||
PHD-Materials Sci.&Engineering | * | ||
PHD-Mathematics | |||
PHD-Mechatronics | * | ||
PHD-Mechatronics after UG | * | ||
PHD-Physics | |||
PHD-Physics after UG | |||
PHD-Social Psychology | |||
PHDBIO after UG | * | ||
PHDCYSEC after UG | * | ||
PHDEECS after UG | * | ||
PHDEPSY after UG | |||
PHDIE after UG | * | ||
PHDMAN after UG | |||
PHDMAN after UG-Finance | |||
PHDMAN after UG-Man. and Org. | |||
PHDMAN after UG-Op.&Sup. Cha. | |||
PHDMAN-Finance Area | |||
PHDMAN-Man. and Org. Area | |||
PHDMAN-Op. & Supp. Chain Area | |||
PHDMAT after UG | * | ||
PHDMATH after UG | |||
PHDSPSY after UG |
CONTENT
OBJECTIVE
To teach fundamentals of metrology (science of measurement) by focusing on dimension measurement methods widely used in manufacturing engineering, manufacturing process management and nanotechnology.
LEARNING OUTCOME
The learners will understand the fundamental principles of measurement science and will acquire skills to allow them to operate effectively in a precision engineering manufacturing environment. At the end of the course, they will gain metrology knowledge and attitude to improve production assurance. They will be able to think analytically and make better decisions for selection of metrology equipment in the manufacturing. The learners will also have a good understanding of international and national metrology systems to use for quality assurance, quality management systems (such as ISO 9000s, 14000s,17025) and product development-certification in real industrial applications. The learners will also gain information about European Metrology Research Programmes (EMRP/EMPIR) that will promote them to participate high level scientific metrology research projects during their MSc and PhD. This will enable them to work with world class scientists in metrology, have joints papers and also prepare themselves for applications in the future factory (industry 4) where zero defect production is aimed.
Update Date:
ASSESSMENT METHODS and CRITERIA
Percentage (%) | |
Final | 30 |
Midterm | 25 |
Assignment | 20 |
Written Report | 25 |
RECOMENDED or REQUIRED READINGS
Textbook |
Fundamentals of Dimensional Metrology Paperback? November 21, 2006 by Connie L Dotson (Author). |
Readings |
Metrology for Engineers, John Frederick Wise Galyer, Charles Reginald Shotbolt Further documents will be provided by the instructor during the course. |