This course first provides introduction to key concepts of metrology (science of measurement) such as traceability, uncertainty, accuracy, calibration, world metrology systems and accreditation. Then the focus is production- related metrology mainly based on dimensional measurement applications such as displacement, flatness and gauge block interferometric-mechanical measurements, diameter, form and surface texture standards measurements, scale and displacement sensor calibrations, coordinate metrology (CMMs), in-process measurements, optical tooling, nanometrology (atomic scale measurements), machine tool metrology, angle metrology and uncertainty calculations. Principles for precision engineering applications will also be covered including preliminary errors in dimensional metrology and motion mechanism , Abbe principle and applications conforming this principle and self- elimination/separation of errors, metrology loop , influence of temperature, force and vibration in dimensional measurements and precautions for precision engineering to lower the uncertainty of measurements. Laboratory exercises will be carried out with selected examples such as calibration of CNC machine tools using laser interferometers, effective use of reference standards for manufacturing and angular axis calibration of rotary tables using optical components and non-contact measurement equipment.
Manufacturing Metrology (MFG 511)
Programs\Type | Required | Core Elective | Area Elective |
Computer Science and Engineering - With Bachelor's Degree | * | ||
Computer Science and Engineering - With Master's Degree | * | ||
Computer Science and Engineering - With Thesis | * | ||
Cyber Security - With Bachelor's Degree | * | ||
Cyber Security - With Master's Degree | * | ||
Cyber Security - With Thesis | * | ||
Data Science - With Thesis | * | ||
Electronics Engineering and Computer Science - With Bachelor's Degree | * | ||
Electronics Engineering and Computer Science - With Master's Degree | * | ||
Electronics Engineering and Computer Science - With Thesis | * | ||
Electronics Engineering - With Bachelor's Degree | * | ||
Electronics Engineering - With Master's Degree | * | ||
Electronics Engineering - With Thesis | * | ||
Energy Technologies and Management-With Thesis | * | ||
Industrial Engineering - With Bachelor's Degree | * | ||
Industrial Engineering - With Master's Degree | * | ||
Industrial Engineering - With Thesis | * | ||
Leaders for Industry Biological Sciences and Bioengineering - Non Thesis | * | ||
Leaders for Industry Computer Science and Engineering - Non Thesis | * | ||
Leaders for Industry Electronics Engineering and Computer Science - Non Thesis | * | ||
Leaders for Industry Electronics Engineering - Non Thesis | * | ||
Leaders for Industry Industrial Engineering - Non Thesis | * | ||
Leaders for Industry Materials Science and Engineering - Non Thesis | * | ||
Leaders for Industry Mechatronics Engineering - Non Thesis | * | ||
Manufacturing Engineering - Non Thesis | * | ||
Manufacturing Engineering - With Bachelor's Degree | * | ||
Manufacturing Engineering - With Master's Degree | * | ||
Manufacturing Engineering - With Thesis | * | ||
Materials Science and Nano Engineering-(Pre:Materials Science and Engineering) | * | ||
Materials Science and Nano Engineering-(Pre:Materials Science and Engineering) | * | ||
Materials Science and Nano Engineering - With Thesis (Pre.Name: Materials Science and Engineering) | * | ||
Mathematics - With Bachelor's Degree | * | ||
Mathematics - With Master's Degree | * | ||
Mathematics - With Thesis | * | ||
Mechatronics Engineering - With Bachelor's Degree | * | ||
Mechatronics Engineering - With Master's Degree | * | ||
Mechatronics Engineering - With Thesis | * | ||
Molecular Biology, Genetics and Bioengineering (Prev. Name: Biological Sciences and Bioengineering) | * | ||
Molecular Biology, Genetics and Bioengineering-(Prev. Name: Biological Sciences and Bioengineering) | * | ||
Molecular Biology,Genetics and Bioengineering-With Thesis (Pre.Name:Biological Sciences and Bioeng.) | * | ||
Physics - Non Thesis | * | ||
Physics - With Bachelor's Degree | * | ||
Physics - With Master's Degree | * | ||
Physics - With Thesis | * |
CONTENT
OBJECTIVE
To teach fundamentals of metrology (science of measurement) by focusing on dimension measurement methods widely used in manufacturing engineering, manufacturing process management and nanotechnology.
LEARNING OUTCOMES
- The learners will understand the fundamental principles of measurement science and will acquire skills to allow them to operate effectively in a precision engineering manufacturing environment. At the end of the course, they will gain metrology knowledge and attitude to improve production assurance. They will be able to think analytically and make better decisions for selection of metrology equipment in the manufacturing. The learners will also have a good understanding of international and national metrology systems to use for quality assurance, quality management systems (such as ISO 9000s, 14000s,17025) and product development-certification in real industrial applications. The learners will also gain information about European Metrology Research Programmes (EMRP/EMPIR) that will promote them to participate high level scientific metrology research projects during their MSc and PhD. This will enable them to work with world class scientists in metrology, have joints papers and also prepare themselves for applications in the future factory (industry 4) where zero defect production is aimed.
Update Date:
ASSESSMENT METHODS and CRITERIA
Percentage (%) | |
Final | 30 |
Midterm | 25 |
Assignment | 20 |
Written Report | 25 |
RECOMENDED or REQUIRED READINGS
Textbook |
Fundamentals of Dimensional Metrology Paperback? November 21, 2006 by Connie L Dotson (Author). |
Readings |
Metrology for Engineers, John Frederick Wise Galyer, Charles Reginald Shotbolt Further documents will be provided by the instructor during the course. |