Topics covered are fundamentals of the renewable and sustainable energy systems technology, thermo-economic analysis and the current research trends in improving the energy production from terrestrial water and air flows, solar irradiation, nuclear fission and controlled plasma for fusion, energy conversion alternatives such as hydrogen fuel cells, small and large scale energy storage such as electric batteries, thermal and compressed-gas, and the current research on the electric transmission grids and an introductory economic analysis of the domestic electric use in the future.
Renewable and Sustainable Energy Systems (ME 520)
Programs\Type | Required | Core Elective | Area Elective |
MA-European Studies | |||
MA-European Studies-Non Thesis | |||
MA-Political Science | |||
MA-Political Science-Non Thes | |||
MA-Visual Arts&Vis. Com Des-NT | |||
MA-Visual Arts&Visual Com Des | |||
MS-Bio. Sci. & Bioeng. LFI | |||
MS-Bio. Sci. & Bioeng. LFI-ENG | |||
MS-Biological Sci&Bioeng. | * | ||
MS-Computer Sci.&Eng. LFI | |||
MS-Computer Sci.&Eng. LFI-ENG | |||
MS-Computer Science and Eng. | * | ||
MS-Cyber Security(with thesis) | * | ||
MS-Data Science | |||
MS-Elec. Eng&Comp Sc.LFI-ENG | |||
MS-Electronics Eng&Comp Sc.LFI | |||
MS-Electronics Eng&Computer Sc | * | ||
MS-Electronics Eng. | * | ||
MS-Electronics Eng. LFI | |||
MS-Electronics Eng. LFI-ENG | |||
MS-Energy Techno.&Man. | * | ||
MS-Industrial Eng. LFI-ENG | |||
MS-Industrial Engineering | * | ||
MS-Industrial Engineering LFI | |||
MS-Manufacturing Eng-Non Thes | * | ||
MS-Manufacturing Engineering | * | ||
MS-Materials Sci & Engineering | * | ||
MS-Materials Sci. & Eng. LFI | |||
MS-Materials Sci.&Eng. LFI-ENG | |||
MS-Mathematics | |||
MS-Mechatronics | * | ||
MS-Mechatronics LFI | |||
MS-Mechatronics LFI-ENG | |||
MS-Physics | |||
MS-Physics-Non Thesis | * | ||
MS-Psychology | |||
MS-Psychology-Non Thesis | |||
PHD-Biological Sci&Bioeng. | * | ||
PHD-Comp. Sci and Eng.after UG | * | ||
PHD-Computer Science and Eng. | * | ||
PHD-Cyber Security | * | ||
PHD-Electronics Eng&ComputerSc | * | ||
PHD-Electronics Eng. | * | ||
PHD-Electronics Eng. after UG | * | ||
PHD-Experimental Psychology | |||
PHD-Industrial Engineering | * | ||
PHD-Management | |||
PHD-Manufacturing Eng after UG | * | ||
PHD-Manufacturing Engineering | * | ||
PHD-Materials Sci.&Engineering | * | ||
PHD-Mathematics | |||
PHD-Mechatronics | * | ||
PHD-Mechatronics after UG | * | ||
PHD-Physics | |||
PHD-Physics after UG | |||
PHD-Social Psychology | |||
PHDBIO after UG | * | ||
PHDCYSEC after UG | * | ||
PHDEECS after UG | * | ||
PHDEPSY after UG | |||
PHDIE after UG | * | ||
PHDMAN after UG | |||
PHDMAN after UG-Finance | |||
PHDMAN after UG-Man. and Org. | |||
PHDMAN after UG-Op.&Sup. Cha. | |||
PHDMAN-Finance Area | |||
PHDMAN-Man. and Org. Area | |||
PHDMAN-Op. & Supp. Chain Area | |||
PHDMAT after UG | * | ||
PHDMATH after UG | |||
PHDSPSY after UG |
CONTENT
LEARNING OUTCOME
Knowledge & understanding:
Upon successful completion students will be able to:
- Improve intuition and understanding of renewable and sustainable energy systems such as wind, hydro, solar, fuel cells and nuclear reactors;
- Gain insight into the application basic science and engineering fundamentals to analyze renewable and sustainable energy systems;
- Improve understanding of thermodynamic laws, energy transport mechanisms, radiation and climate change.
Intellectual (thinking) skills: application:
Students will be able to:
-Identify issues facing the renewable energy industry and climate change
-Analyse wind speed data and wind turbine performance in a given wind regime
-Identify the various components of a wind turbine and their functions and types
-Identify planning and environmental issues related to wind power systems
-Describe main features and operation of solar hot water systems and photovoltaic systems
-Describe main features and opeation of nuclear power reactors
-Understand risks of radiation
-Describe main features and operation of hydrogen fuel cells
Practical skills
Students will be able to
- Identify reasonable assumptions and conduct simple analysis of energy systems
- Undertake problem identification, formulation and solution
- Identify issues facing the renewable energy industry
Transferable Skills
On successful completion of the course, students will be able to:
-Work with others on solution strategies but solve the actual problem on their own thorough homework assignments.
-Understand and communicate professional and ethical responsibilities
Update Date:
ASSESSMENT METHODS and CRITERIA
Percentage (%) | |
Midterm | 25 |
Individual Project | 25 |
Presentation | 10 |
Homework | 25 |
RECOMENDED or REQUIRED READINGS
Textbook |
Fundamentals of Renewable Energy Processes, Aldo Vieira da Rosa, Academic Press |
Readings |
Sustainable Energy ? without the Hot Air, David JC MacKay, 2010 |