Fundamentals of electrochemistry including thermodynamics of electrochemistry, electrode kinetics, electrode potentials, electrochemical cell, Faradays law, electrical conductivity, mass transfer. Basic techniques in electrochemistry including potentiostatic and galvanostatic methods, cyclic voltammetry, electrochemical impedance spectroscopy. Applications of electrochemistry: electrochemical polymerization, conducting polymers, batteries, fuel cells, biofuel cells.
Electrochemistry (CHEM 505)
Programs\Type | Required | Core Elective | Area Elective |
MA-European Studies | |||
MA-European Studies-Non Thesis | |||
MA-Political Science | |||
MA-Political Science-Non Thes | |||
MA-Visual Arts&Vis. Com Des-NT | |||
MA-Visual Arts&Visual Com Des | |||
MS-Bio. Sci. & Bioeng. LFI | |||
MS-Bio. Sci. & Bioeng. LFI-ENG | |||
MS-Biological Sci&Bioeng. | * | ||
MS-Computer Sci.&Eng. LFI | |||
MS-Computer Sci.&Eng. LFI-ENG | |||
MS-Computer Science and Eng. | * | ||
MS-Cyber Security(with thesis) | * | ||
MS-Data Science | |||
MS-Elec. Eng&Comp Sc.LFI-ENG | |||
MS-Electronics Eng&Comp Sc.LFI | |||
MS-Electronics Eng&Computer Sc | * | ||
MS-Electronics Eng. | * | ||
MS-Electronics Eng. LFI | |||
MS-Electronics Eng. LFI-ENG | |||
MS-Energy Techno.&Man. | * | ||
MS-Industrial Eng. LFI-ENG | |||
MS-Industrial Engineering | * | ||
MS-Industrial Engineering LFI | |||
MS-Manufacturing Eng-Non Thes | * | ||
MS-Manufacturing Engineering | * | ||
MS-Materials Sci & Engineering | * | ||
MS-Materials Sci. & Eng. LFI | |||
MS-Materials Sci.&Eng. LFI-ENG | |||
MS-Mathematics | |||
MS-Mechatronics | * | ||
MS-Mechatronics LFI | |||
MS-Mechatronics LFI-ENG | |||
MS-Physics | |||
MS-Physics-Non Thesis | * | ||
MS-Psychology | |||
MS-Psychology-Non Thesis | |||
PHD-Biological Sci&Bioeng. | * | ||
PHD-Comp. Sci and Eng.after UG | * | ||
PHD-Computer Science and Eng. | * | ||
PHD-Cyber Security | * | ||
PHD-Electronics Eng&ComputerSc | * | ||
PHD-Electronics Eng. | * | ||
PHD-Electronics Eng. after UG | * | ||
PHD-Experimental Psychology | |||
PHD-Industrial Engineering | * | ||
PHD-Management | |||
PHD-Manufacturing Eng after UG | * | ||
PHD-Manufacturing Engineering | * | ||
PHD-Materials Sci.&Engineering | * | ||
PHD-Mathematics | |||
PHD-Mechatronics | * | ||
PHD-Mechatronics after UG | * | ||
PHD-Physics | |||
PHD-Physics after UG | |||
PHD-Social Psychology | |||
PHDBIO after UG | * | ||
PHDCYSEC after UG | * | ||
PHDEECS after UG | * | ||
PHDEPSY after UG | |||
PHDIE after UG | * | ||
PHDMAN after UG | |||
PHDMAN after UG-Finance | |||
PHDMAN after UG-Man. and Org. | |||
PHDMAN after UG-Op.&Sup. Cha. | |||
PHDMAN-Finance Area | |||
PHDMAN-Man. and Org. Area | |||
PHDMAN-Op. & Supp. Chain Area | |||
PHDMAT after UG | * | ||
PHDMATH after UG | |||
PHDSPSY after UG |
CONTENT
OBJECTIVE
* provide a foundation in theoretical electrochemistry which is sufficient for the understanding of many basic phenomena.
* familiarize the student with those electrochemical methods that are exploited in many electroanalytical and technologically important applications such as batteries and fuel cells
* teach the theory behind a number of advanced electrochemical methods
LEARNING OUTCOME
Describe (draw) an electrochemical cell, and to calculate potential of an electrochemical cell
Describe thermodynamics of electrochemistry
Explain and use Faraday laws
Discuss about electrode kinetics
Describe conductivity and solve problems about conductivity
Describe electrochemical techniques, including voltammetry and impedance spectroscopy
Discuss about conducting polymers, batteries and fuel cells
Update Date:
ASSESSMENT METHODS and CRITERIA
Percentage (%) | |
Final | 35 |
Midterm | 25 |
Participation | 5 |
Individual Project | 35 |