Semiconductor Physics and Devices (EE 307)

2021 Fall
Faculty of Engineering and Natural Sciences
Electronics Engineering(EE)
3
6
Murat Kaya Yapıcı mkyapici@sabanciuniv.edu,
Click here to view.
English
Undergraduate
ENS203
Formal lecture,Recitation
Learner centered
Click here to view.

CONTENT

This course begins with a substantive treatment of the fundamental behavior of semiconductor materials and moves on to the semiconductor diode, the bipolar transistor, and field-effect transistor devices. Building upon these concepts, their operations, biasing, small- and large-signal models are analyzed. Laboratory exercises are provided to reinforce the theory of operation of these devices.

OBJECTIVE

The primary objective of this course is to provide students with the fundamental physical and electronic properties of semiconductor materials and the operation principles of most common semiconductor devices used in electronic circuits.Starting from the solid structure of semiconductors, the course aims to examine the basic physical processes taking place in semiconductor devices and their relation to the performance parameters of device operation.

LEARNING OUTCOMES

  • To understand the fundamental physical properties of semiconductors.
  • To learn the behavior of carriers in a semiconductor crystal in equilibrium, continuity equations, concept of minority-majority carriers, doping.
  • To learn the fundamental theory and the relationships for the analysis of semiconductor devices and be able to explain the operation of fundamental semiconductor devices including pn junctions, bipolar junction transistors and field effect transistors.
  • To learn energy band models and be able to draw energy band diagrams for semiconductor structures subject to various conditions.
  • Comprehensive understanding of the derivation of I-V relationships used in electronic circuit analysis of fundamental building blocks of semiconductor ICs.

PROGRAMME OUTCOMES


1. Understand the world, their country, their society, as well as themselves and have awareness of ethical problems, social rights, values and responsibility to the self and to others. 3

2. Understand different disciplines from natural and social sciences to mathematics and art, and develop interdisciplinary approaches in thinking and practice. 5

3. Think critically, follow innovations and developments in science and technology, demonstrate personal and organizational entrepreneurship and engage in life-long learning in various subjects; have the ability to continue to educate him/herself. 5

4. Communicate effectively in Turkish and English by oral, written, graphical and technological means. 4

5. Take individual and team responsibility, function effectively and respectively as an individual and a member or a leader of a team; and have the skills to work effectively in multi-disciplinary teams. 3


1. Possess sufficient knowledge of mathematics, science and program-specific engineering topics; use theoretical and applied knowledge of these areas in complex engineering problems. 5

2. Identify, define, formulate and solve complex engineering problems; choose and apply suitable analysis and modeling methods for this purpose. 5

3. Develop, choose and use modern techniques and tools that are needed for analysis and solution of complex problems faced in engineering applications; possess knowledge of standards used in engineering applications; use information technologies effectively. 4

4. Have the ability to design a complex system, process, instrument or a product under realistic constraints and conditions, with the goal of fulfilling specified needs; apply modern design techniques for this purpose. 5

5. Design and conduct experiments, collect data, analyze and interpret the results to investigate complex engineering problems or program-specific research areas. 3

6. Possess knowledge of business practices such as project management, risk management and change management; awareness on innovation; knowledge of sustainable development. 4

7. Possess knowledge of impact of engineering solutions in a global, economic, environmental, health and societal context; knowledge of contemporary issues; awareness on legal outcomes of engineering solutions; knowledge of behavior according to ethical principles, understanding of professional and ethical responsibility. 4

8. Have the ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. 5


1. Comprehend key concepts in biology and physiology, with emphasis on molecular genetics, biochemistry and molecular and cell biology as well as advanced mathematics and statistics. 1

2. Develop conceptual background for interfacing of biology with engineering for a professional awareness of contemporary biological research questions and the experimental and theoretical methods used to address them. 3


1. Use mathematics (including derivative and integral calculations, probability and statistics, differential equations, linear algebra, complex variables and discrete mathematics), basic sciences, computer and programming, and electronics engineering knowledge to (a) Design and analyze complex electronic circuits, instruments, software and electronics systems with hardware/software or (b) Design and analyze communication networks and systems, signal processing algorithms or software 5


1. Applying fundamental and advanced knowledge of natural sciences as well as engineering principles to develop and design new materials and establish the relation between internal structure and physical properties using experimental, computational and theoretical tools. 4

2. Merging the existing knowledge on physical properties, design limits and fabrication methods in materials selection for a particular application or to resolve material performance related problems. 5

3. Predicting and understanding the behavior of a material under use in a specific environment knowing the internal structure or vice versa. 4


1. Familiarity with concepts in statistics and optimization, knowledge in basic differential and integral calculus, linear algebra, differential equations, complex variables, multi-variable calculus, as well as physics and computer science, and ability to use this knowledge in modeling, design and analysis of complex dynamical systems containing hardware and software components. 3

2. Ability to work in design, implementation and integration of engineering applications, such as electronic, mechanical, electromechanical, control and computer systems that contain software and hardware components, including sensors, actuators and controllers. 5

ASSESSMENT METHODS and CRITERIA

  Percentage (%)
Final 40
Midterm 30
Quiz 20
Participation 5
Homework 5

RECOMENDED or REQUIRED READINGS

Textbook

Semiconductor Device Fundamentals, R.F.Pierret