Kinetics of Materials (MAT 206)

2019 Spring
Faculty of Engineering and Natural Sciences
Materials Sci.& Nano Eng.(MAT)
3
6.00 / 6.00 ECTS (for students admitted in the 2013-14 Academic Year or following years)
Cleva Ow Yang -cleva@sabanciuniv.edu,
English
Undergraduate
ENS205 ENS202
Interactive lecture,Recitation
Communicative,Discussion based learning
Click here to view.

CONTENT

Kinetics in materials engineering involves how a system approaches equilibrium, i.e. microstructural evolution: diffusion equation, diffusion in the atomic level, diffusion in crystals and and noncrystalline materials, surface and interface structure and formation, motion of dislocations, phase transformations?diffusional, such as nucleation and growth for solidification, and diffusionless, such as martensitic? and crystallization, reaction/mixture kinetics.

OBJECTIVE

Course motivation: Material systems evolve due to reactions or transformations. While thermodynamics tell us what the final state should be, kinetics tells us if and how the system will reach its final state. The details for how quickly or in what manner the system evolves would guide you determining the processing of a material. Such information would also help you predict if the performance of your material would be stable during its operational lifetime. This course will prepare you for being an effective materials engineer or scientist, independent of your specialization.

LEARNING OUTCOME

Be able to describe atomistic models of diffusion, their practical validation, and their use in applied studies


Be able to build models of evolving surfaces and interfaces in the context of thermodynamic descriptions
Be able to model microstructural evolution during solidification
Be able to describe the model of nucleation and growth for homogeneous and heterogeneous systems
Be able to describe models for diffusionless transformation and apply these models in practical application
Be able to apply thermodynamic principles to describe microstructural evolution in models of simple systems and in real application
Be able to apply equilibrium phase diagrams to analyze complex processes in materials evolution and model departure from equilibrium conditions.

PROGRAMME OUTCOMES


1. Understand the world, their country, their society, as well as themselves and have awareness of ethical problems, social rights, values and responsibility to the self and to others. 1

2. Understand different disciplines from natural and social sciences to mathematics and art, and develop interdisciplinary approaches in thinking and practice. 3

3. Think critically, follow innovations and developments in science and technology, demonstrate personal and organizational entrepreneurship and engage in life-long learning in various subjects. 3

4. Communicate effectively in Turkish and English by oral, written, graphical and technological means. 4

5. Take individual and team responsibility, function effectively and respectively as an individual and a member or a leader of a team; and have the skills to work effectively in multi-disciplinary teams. 2


1. Possess sufficient knowledge of mathematics, science and program-specific engineering topics; use theoretical and applied knowledge of these areas in complex engineering problems. 5

2. Identify, define, formulate and solve complex engineering problems; choose and apply suitable analysis and modeling methods for this purpose. 5

3. Develop, choose and use modern techniques and tools that are needed for analysis and solution of complex problems faced in engineering applications; possess knowledge of standards used in engineering applications; use information technologies effectively. 4

4. Ability to design a complex system, process, instrument or a product under realistic constraints and conditions, with the goal of fulfilling specified needs; apply modern design techniques for this purpose. 4

5. Design and conduct experiments, collect data, analyze and interpret the results to investigate complex engineering problems or program-specific research areas. 3

6. Knowledge of business practices such as project management, risk management and change management; awareness on innovation; knowledge of sustainable development. 1

7. Knowledge of impact of engineering solutions in a global, economic, environmental, health and societal context; knowledge of contemporary issues; awareness on legal outcomes of engineering solutions; understanding of professional and ethical responsibility. 2


1. Comprehend key concepts in biology and physiology, with emphasis on molecular genetics, biochemistry and molecular and cell biology as well as advanced mathematics and statistics. 2

2. Develop conceptual background for interfacing of biology with engineering for a professional awareness of contemporary biological research questions and the experimental and theoretical methods used to address them. 2


1. Applying fundamental and advanced knowledge of natural sciences as well as engineering principles to develop and design new materials and establish the relation between internal structure and physical properties using experimental, computational and theoretical tools. 5

2. Merging the existing knowledge on physical properties, design limits and fabrication methods in materials selection for a particular application or to resolve material performance related problems. 5

3. Predicting and understanding the behavior of a material under use in a specific environment knowing the internal structure or vice versa. 5


1. Familiarity with concepts in statistics and optimization, knowledge in basic differential and integral calculus, linear algebra, differential equations, complex variables, multi-variable calculus, as well as physics and computer science, and ability to use this knowledge in modeling, design and analysis of complex dynamical systems containing hardware and software components. 2

2. Ability to work in design, implementation and integration of engineering applications, such as electronic, mechanical, electromechanical, control and computer systems that contain software and hardware components, including sensors, actuators and controllers. 1

ASSESSMENT METHODS and CRITERIA

  Percentage (%)
Midterm 40
Homework 10
Other 50

RECOMENDED or REQUIRED READINGS

Readings

The following textbooks provide supplemental information for the lecture material:
a. Thermodynamics of Materials, Vol. 2, by David V. Ragone
b. Phase Transformations in Metals and Alloys, by D.A. Porter & K.E. Easterling