Introduction to Computing (CS 201)

2019 Summer
Faculty of Engineering and Natural Sciences
Computer Sci.& Eng.(CS)
3
6.00 / 6.00 ECTS (for students admitted in the 2013-14 Academic Year or following years)
Barış Altop -baris.altop@sabanciuniv.edu,
English
Undergraduate
IF100
Formal lecture,Interactive lecture,Field work/field study/on-the-job,Recitation,Laboratory
Interactive,Communicative,Task based learning
Click here to view.

CONTENT

This course is intended to introduce students to the field of computing (basic computer organization, data representation, concepts, algorithmic thinking and problem solving), as well as giving them intermediate level programming abilities in an object-oriented programming language (currently C++). Also part of the "core course" pools for the CS, BIO, MAT, ME, EL, TE, MS degree programs.

OBJECTIVE

To introduce students to the field of computing (basic computer organization, data representation, concepts, algorithmic thinking and problem solving), as well as giving them intermediate level programming abilities in an object-oriented programming language (currently C++).

LEARNING OUTCOME

Upon successful completion of Introduction to Computing, students are expected to be able to:
Describe the basics of computer architecture, programming languages and compilers
Design an algorithm (step-by-step solution) for a given computing problem
Write small C++ programs
Use the basic programming concepts like if-else statements and while-for loops
Use functions and describe different parameter passing methods
Use, modify existing classes and design new classes
Perform simple text file I/O operations
Perform searches on arrays and sort arrays
Perform basic complexity analysis on algorithms

PROGRAMME OUTCOMES


1. Understand the world, their country, their society, as well as themselves and have awareness of ethical problems, social rights, values and responsibility to the self and to others. 1

2. Understand different disciplines from natural and social sciences to mathematics and art, and develop interdisciplinary approaches in thinking and practice. 2

3. Think critically, follow innovations and developments in science and technology, demonstrate personal and organizational entrepreneurship and engage in life-long learning in various subjects. 2

4. Communicate effectively in Turkish and English by oral, written, graphical and technological means. 2

5. Take individual and team responsibility, function effectively and respectively as an individual and a member or a leader of a team; and have the skills to work effectively in multi-disciplinary teams. 3


1. Develop knowledge of theories, concepts, and research methods in humanities and social sciences.

2. Assess how global, national and regional developments affect society.

3. Know how to access and evaluate data from various sources of information.


1. Possess sufficient knowledge of mathematics, science and program-specific engineering topics; use theoretical and applied knowledge of these areas in complex engineering problems. 2

2. Identify, define, formulate and solve complex engineering problems; choose and apply suitable analysis and modeling methods for this purpose. 4

3. Develop, choose and use modern techniques and tools that are needed for analysis and solution of complex problems faced in engineering applications; possess knowledge of standards used in engineering applications; use information technologies effectively. 3

4. Ability to design a complex system, process, instrument or a product under realistic constraints and conditions, with the goal of fulfilling specified needs; apply modern design techniques for this purpose. 4

5. Design and conduct experiments, collect data, analyze and interpret the results to investigate complex engineering problems or program-specific research areas. 1

6. Knowledge of business practices such as project management, risk management and change management; awareness on innovation; knowledge of sustainable development. 1

7. Knowledge of impact of engineering solutions in a global, economic, environmental, health and societal context; knowledge of contemporary issues; awareness on legal outcomes of engineering solutions; understanding of professional and ethical responsibility. 1


1. Familiarity with concepts in statistics and optimization, knowledge in basic differential and integral calculus, linear algebra, differential equations, complex variables, multi-variable calculus, as well as physics and computer science, and ability to use this knowledge in modeling, design and analysis of complex dynamical systems containing hardware and software components. 3

2. Ability to work in design, implementation and integration of engineering applications, such as electronic, mechanical, electromechanical, control and computer systems that contain software and hardware components, including sensors, actuators and controllers. 1


1. Formulate and analyze problems in complex manufacturing and service systems by comprehending and applying the basic tools of industrial engineering such as modeling and optimization, stochastics, statistics. 1

2. Design and develop appropriate analytical solution strategies for problems in integrated production and service systems involving human capital, materials, information, equipment, and energy. 1

3. Implement solution strategies on a computer platform for decision-support purposes by employing effective computational and experimental tools. 2


1. Design, implement, test, and evaluate a computer system, component, or algorithm to meet desired needs and to solve a computational problem. 5

2. Demonstrate knowledge of discrete mathematics and data structures. 4

3. Demonstrate knowledge of probability and statistics, including applications appropriate to computer science and engineering. 3


1. Use mathematics (including derivative and integral calculations, probability and statistics, differential equations, linear algebra, complex variables and discrete mathematics), basic sciences, computer and programming, and electronics engineering knowledge to (a) Design and analyze complex electronic circuits, instruments, software and electronics systems with hardware/software. or (b) Design and analyze communication networks and systems, signal processing algorithms or software 2


1. Applying fundamental and advanced knowledge of natural sciences as well as engineering principles to develop and design new materials and establish the relation between internal structure and physical properties using experimental, computational and theoretical tools. 1

2. Merging the existing knowledge on physical properties, design limits and fabrication methods in materials selection for a particular application or to resolve material performance related problems. 1

3. Predicting and understanding the behavior of a material under use in a specific environment knowing the internal structure or vice versa. 1


1. Comprehend key concepts in biology and physiology, with emphasis on molecular genetics, biochemistry and molecular and cell biology as well as advanced mathematics and statistics. 1

2. Develop conceptual background for interfacing of biology with engineering for a professional awareness of contemporary biological research questions and the experimental and theoretical methods used to address them. 1


1. Demonstrate safe working habits and a general understanding of materials and processes in the visual arts. 1

2. Demonstrate knowledge of representational processes using visual as well as audial material as mediums of representation. 1

3. Show working knowledge of the process of transforming abstract/textual concepts into concrete, audio/visual forms. 1

4. Appreciate and express the cultural significance of art and understand its evolution and purposes. 1

5. Develop an awareness of compositional and organizational strategies for the effective deployment of formal elements of visual art. 1

6. Read visual texts with a deep knowledge of art history and theory and the ability of situating the content and form of the visual representation both in a historical and thematic context. 1

7. Employ necessary background knowledge regarding art administration in the body of museums and galleries. 1

8. Show a practical and technical command of materials and methods in one or more media of the visual arts. 1

ASSESSMENT METHODS and CRITERIA

  Percentage (%)
Final 30
Midterm 48
Assignment 18
Participation 4

RECOMENDED or REQUIRED READINGS

Textbook

A Computer Science Tapestry, 2nd Edition, Owen L. Astrachan.

Course Web http://myweb.sabanciuniv.edu/gulsend/su_current_courses/cs-201-spring-2008/