Click to Print This Page
Code MAT 551
Term 201702
Title Graduate Seminar I
Faculty Faculty of Engineering and Natural Sciences
Subject Materials Sci.& Nano Eng.(MAT)
SU Credit 0
ECTS Credit 1.00
Instructor(s) Selmiye Alkan Gursel -selmiye@sabanciuniv.edu,
Language of Instruction English
Level of Course Doctoral
Master
Type of Course Click here to view.
Prerequisites
(only for SU students)
--
Mode of Delivery Seminar
Planned Learning Activities Interactive,Communicative,Discussion based learning
Content

Objective

To get students familiar with Materials Science and Engineering research and technology.

Learning Outcome

This course is a seminar series where invited speakers both from domestic and international institutions visit our program and give talks on their research activities. At the end of the seminar series, students

Are exposed to a variety of research topics,

Can establish contacts with the speaker,
Learn about the opportunities in their respective fields,
Attain an international perspective in professional relations

Programme Outcomes
 
1 Develop and deepen the current and advanced knowledge in the field with original thought and/or research and come up with innovative definitions based on Master's degree qualifications
2 Conceive the interdisciplinary interaction which the field is related with ; come up with original solutions by using knowledge requiring proficiency on analysis, synthesis and assessment of new and complex ideas.
3 Evaluate and use new information within the field in a systematic approach.
4 Develop an innovative knowledge, method, design and/or practice or adapt an already known knowledge, method, design and/or practice to another field; research, conceive, design, adapt and implement an original subject.
5 Critical analysis, synthesis and evaluation of new and complex ideas.
6 Gain advanced level skills in the use of research methods in the field of study.
7 Contribute the progression in the field by producing an innovative idea, skill, design and/or practice or by adapting an already known idea, skill, design, and/or practice to a different field independently.
8 Broaden the borders of the knowledge in the field by producing or interpreting an original work or publishing at least one scientific paper in the field in national and/or international refereed journals.
9 Demonstrate leadership in contexts requiring innovative and interdisciplinary problem solving.
10 Develop new ideas and methods in the field by using high level mental processes such as creative and critical thinking, problem solving and decision making.
11 Investigate and improve social connections and their conducting norms and manage the actions to change them when necessary.
12 Defend original views when exchanging ideas in the field with professionals and communicate effectively by showing competence in the field.
13 Ability to communicate and discuss orally, in written and visually with peers by using a foreign language at least at a level of European Language Portfolio C1 General Level.
14 Contribute to the transition of the community to an information society and its sustainability process by introducing scientific, technological, social or cultural improvements.
15 Demonstrate functional interaction by using strategic decision making processes in solving problems encountered in the field.
16 Contribute to the solution finding process regarding social, scientific, cultural and ethical problems in the field and support the development of these values.
1 Develop the ability to use critical, analytical, and reflective thinking and reasoning
2 Reflect on social and ethical responsibilities in his/her professional life.
3 Gain experience and confidence in the dissemination of project/research outputs
4 Work responsibly and creatively as an individual or as a member or leader of a team and in multidisciplinary environments.
5 Communicate effectively by oral, written, graphical and technological means and have competency in English.
6 Independently reach and acquire information, and develop appreciation of the need for continuously learning and updating.
1 Design and model engineering systems and processes and solve engineering problems with an innovative approach.
2 Establish experimental setups, conduct experiments and/or simulations.
3 Analytically acquire and interpret data.
1 Assess and identify developments, strategies, opportunities and problems in energy security and energy technologies.
2 Define and solve technical, economic and administrative problems in energy businesses.
3 Establish knowledge and understanding of energy security, energy technologies, energy markets and strategic planning in energy enterprises.
4 Demonstrate an awareness of environmental concerns and their importance in developing engineering solutions and new technologies.
5 Acquire a series of social and technical proficiencies for project management and leadership skills.
1 Apply a broad knowledge of structure & microstructure of all classes of materials, and the ability to use this knowledge to determine the material properties.
2 Apply a broad understanding of the relationships between material properties, performance and processing.
3 Apply a broad understanding of thermodynamics, kinetics, transport phenomena, phase transformations and materials aspects of advanced technology.
4 Demonstrate hands-on experience using a wide range of materials characterization techniques.
5 Demonstrate the use of results from interpreted data to improve the quality of research, a product, or a product in materials science and engineering.
Assessment Methods and Criteria
  Percentage (%)
Participation 80
Other 20