English version |
Süha Orhun MutluergilE-posta : suha.mutluergil sabanciuniv.edu Araştırma Alanları :
yazılım güvenliği ve doğruluğu, koşut zamanlılık kuramı, doğrusallık, didaktif doğrulama, ispatlanabilir garantili test yöntemleri geliştirilmesi, blok-zincir platformlarına odaklı olarak dağıtık ve paylaşımlı-bellek koşut-zamanlı programlar için akıl yürütme yöntemleri geliştirilmesiYayınlar :
Papers in Conference Proceedings |
Aktemur, Ege and Zorlutuna, Ege and Bilgili, Kaan and Bök, Tacettin Emre and Yanıkoğlu, Berrin and Mutluergil, Süha Orhun, "Going forward-forward in distributed deep learning", Lahlou, Salem and Mukund, Madhavan (eds.), 13th International Conference on Networked Systems (NETYS 2025), Switzerland: Springer Cham, October 2025, 171-186 |
Cirisci, Berk and Enea, Constantin and Mutluergil, Süha Orhun, "Quorum tree abstractions of consensus protocols", Wies, Thomas (ed.), 32nd European Symposium on Programming, ESOP 2023, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Springer Cham, April 2023, 337-362 |
Cirisci, Berk and Enea, Constantin and Farzan, Azadeh and Mutluergil, Süha Orhun, "A pragmatic approach to stateful partial order reduction", Dragoi, Cezara and Emmi, Michael and Wang, Jingbo (eds.), 24th International Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI 2023, Springer Cham, January 2023, 129-154 | SU Öncesi Yayınları:
Berk Çirisci, Constantin Enea, Azadeh Farzan, Suha Orhun Mutluergil: Root Causing Linearizability Violations. CAV (1) 2020: 350-375
Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil, Shaz Qadeer: Inductive sequentialization of asynchronous programs. PLDI 2020: 227-242
Suha Orhun Mutluergil, Serdar Tasiran: A mechanized refinement proof of the Chase-Lev deque using a proof system. Computing 101(1): 59-74 (2019)
Chao Wang, Constantin Enea, Suha Orhun Mutluergil, Gustavo Petri: Replication-aware linearizability. PLDI 2019: 980-993
- Suha Orhun Mutluergil, Serdar Tasiran: A Mechanized Refinement Proof of the Chase-Lev Deque Using a Proof System. NETYS 2016: 280-294
|