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Abstract
We consider testing for the presence of a structural break in the

trend of a univariate time-series where the date of the break is un-
known. The tests we propose are robust as to whether the shocks are
generated by a stationary or an integrated process. From an empiri-
cal standpoint, our robust tests can be quite useful in policy analysis:
these tests can easily be employed to evaluate the impact of a one
time policy change or a new regulation on a trending variable. Fol-
lowing Harvey et al. (2010), we utilize two different test statistics; one
is appropriate for the stationary alternative and the other is for the
unit root alternative. Our approach exploits the under-sizing prop-
erty of each test statistic under the other alternative, and is based on
the union of rejections approach proposed by Harvey et al. (2009a).
Two trend break models are considered: the first one is a joint bro-
ken trend model where there is a break in the trend holding the level
fixed, while the latter allows for a simultaneous break in level and
trend which we call the disjoint broken trend model. The behavior of
the proposed tests is studied through Monte Carlo experiments.The
simulation results suggest that our robust tests perform well in small
samples, showing good size control and displaying very decent power
regardless of the degree of persistence of the data.
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1 Introduction

Many macroeconomic and financial time series can be characterized by
shocks fluctuating around a broken trend function. It is very important to
account for changes in the trend function and failure to model the trend
function properly will lead to inconsistent parameter estimates and poor
forecasts. Perron (1989) has shown that an unaccounted break in the trend
function can bias unit root tests toward the nonrejection of the unit root hy-
pothesis. Similarly, unmodeled trend breaks also lead to spurious rejections
in stationarity tests as documented by Lee et al. (1997). In fact, there are
many interesting economic applications for which the existence of structural
change in the trend function can be of interest itself. For example, the em-
pirical debate that convergence in incomes per capita among U.S. regions has
leveled off in the mid-1970s can be explored by modeling the trend function
in time series of incomes per capita in each of the U.S. regions as having a
slope shift in the mid-1970s (see Sayginsoy and Vogelsang (2004)).

Tests of a break in level and/or trend of a time series exist in the lit-
erature. However, for a reliable inference on the existence of a break these
tests assume a priori that the data is generated either by a stationary or
an integrated process (see Bai (1994), Bai and Perron (1998) and Hansen
(1992)). As it is well known, many macroeconomic and financial variables
are highly persistent and it is very difficult to tell a priori that these series are
stationary or integrated. Hence the structural break tests mentioned above
have limitations in practice. One way to overcome this problem is to pretest
the series with unit root or stationarity tests to determine if the series has
a unit root. However, unit root and stationarity tests are known to have
poor size and power properties in the presence of a structural break (Perron
(1989), Lee et al. (1997)). We thus have a circular testing problem between
tests of structural breaks and unit root/stationarity tests.

In this paper, we provide a solution to this dilemma by proposing new
tests for the presence of a structural break in the trend function at an un-
known date that are valid in the presence of stationary (I(0)) or integrated
(I(1)) shocks. We consider tests based on two statistics, one appropriate
for the case of I(0) shocks and the other appropriate for I(1) shocks. These
statistics are the supremum of the trend break t-statistics, calculated for all
permissible break dates, from a regression in levels and a regression in growth
rates. We derive the asymptotic distributions of these statistics in both I(0)
and (local to) I(1) environments. The asymptotic properties demonstrate
that the test statistic appropriate for the case of I(1) shocks converges in
probability to zero under I(0) shocks, while the test appropriate for I(0)
shocks is always under-sized when the shocks are (local to) I(1). These prop-
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erties make it possible the construction of a size-controlled union of rejections
testing approach whereby we reject the null hypothesis of no trend break if
either of the two tests rejects.

Recently, a few other structural break tests that are valid regardless of
whether the shocks are stationary or integrated have been proposed in the
econometrics literature. Sayginsoy and Vogelsang (2011)[SV] propose a Mean
Wald and a Sup Wald statistic using the fixed-b asymptotic framework of
Kiefer and Vogelsang (2005) in conjunction with the scaling factor approach
of Vogelsang (1998) to smooth the discontinuities in the asymptotic distri-
butions of the test statistics as the shocks go from I(0) to I(1). Harvey et
al. (2009b) [HLT] employ tests that are formed as a weighted average of the
supremum of the regression t-statistics, calculated for all permissible break
dates, for a broken trend appropriate for the case of I(0) and I(1) shocks. The
weighting function they utilize is based on the KPSS stationarity test applied
to the levels and first-differenced data. Perron and Yabu (2009) [PY] con-
sider an alternative approach based on a Feasible Generalized Least Squares
procedure that uses a super-efficient estimate of the sum of the autoregressive
parameters α when α = 1. This allows tests of basically the same size with
stationary or integrated shocks regardless of whether the break is known or
unknown, provided that the Exp functional of Andrews and Ploberger (1994)
is used in the latter case.

Our robust tests compare favorably to the other robust tests mentioned
above. The advantage of our method over those of SV and HLT is that it
does not involve any random scaling so that the test used is more prone to
have higher power and less size distortions, as documented under the finite
sample results in Section 5. Our method does well also in comparison with
the method of PY; first PY assume the normality of shocks to derive pivotal
asymptotic distributions for certain broken trend models, and second their
structural break tests don’t allow the estimation of the break date simultane-
ously due to the use of Exp functional. On the other hand, the test statistics
we propose have pivotal asymptotic distributions without any stringent as-
sumptions on the shocks and our method allows us to simultaneously test for
a break and estimate the break date.

It is also straightforward to extend our method to test for multiple trend
breaks or to sequentially test for l versus l+1 breaks in the trend function.
However, the main focus of this paper is to test the null hypothesis that
there is no structural break in the trend against the alternative that there
exists a break in the trend. This type of hypothesis is more relevant if one
wants to evaluate the impact of a one time policy change or a new regulation
on a trending variable. For example, Sidneva and Zivot (2007) consider the
question of whether there was a break in the trends of two air pollutants,
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nitrogen oxides and volatile organic compounds, emissions around the time
the Clean Air Act Amendments of 1970 were passed. The tests we propose in
this paper can easily be employed to answer this question without the need
to know whether the shocks are stationary or integrated.

The rest of the paper is organized as follows. Section 2 reviews the two
trend break models considered and the main assumptions used in the paper.
In sections 3 and 4, we investigate each trend break model separately. Sec-
tion 3 outlines the testing procedure we propose for the joint broken trend
model. We introduce our tests based on two statistics with their asymptotic
properties under the null and the alternative and explain how the union of re-
jections approach works in principle. In section 4, the same steps are carried
out for the disjoint broken trend model. Section 5 provides some Monte Carlo
studies that demonstrate the finite sample properties of our test. Section 6
concludes.

2 Trend Break Models

We consider two trend break models: ”Model 1” is a joint broken trend
model where there is a break in the trend holding the level fixed, while
”Model 2” allows for a simultaneous break in level and trend which we call
the disjoint broken trend model. These are the same models considered by
HLT, corresponds to models (3) and (4) in SV and to models II and III
in PY respectively. We consider the following trend break data generating
processes (DGP) to model broken trends:

yt = α + βt+ γDTt(τ
∗) + ut, t = 1, ...., T (1)

yt = α + βt+ δDUt(τ
∗) + γDTt(τ

∗) + ut, t = 1, ...., T (2)

ut = ρut−1 + εt, t = 2, ..., T, u1 = ε1, (3)

where DUt(τ
∗) = 1(t > T ∗) and DTt(τ

∗) = 1(t > T ∗)(t − T ∗), with T ∗ =
bτ ∗T c the (potential) trend break date with associated break fraction τ ∗ ∈
(0, 1). Equation (1) refers to the joint broken trend model, while equation
(2) defines the disjoint broken trend model.

We assume that εt in (3) satisfies Assumption 1 of SV:
Assumption 1. The stochastic process {εt} is such that

εt = c(L)ηt, c(L) =
∞∑
i=0

ciL
i,

with c(1)2 > 0 and
∑∞

i=0 i|ci| <∞, and where {ηt} is a martingale difference
sequence with unit conditional variance and suptE(η4

t ) <∞.
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The error process {ut} is I(0) when |ρ| < 1 in (3). Alternatively, {ut}
can be modeled as a nearly I(1) process by defining ρ = ρT = 1− c/T , where
c = 0 corresponds to the pure I(1) case. We are interested in testing if there
is a trend break in yt. Our interest in this paper therefore centers on testing
the null hypothesis H0 : γ = 0 against the two-sided alternative hypothesis
H1 : γ 6= 0, independently of whether ut is I(0) or I(1)1.

Remark 1. Under the conditions of Assumption 1, the long-run variance
of εt is given by ω2

ε = limT→∞T
−1E(

∑T
t=1 εt)

2 = c(1)2. Moreover, in the I(0)

case the long-run variance of ut is given by ω2
u = limT→∞T

−1E(
∑T

t=1 ut)
2 =

ω2
ε/(1 − ρ)2. Both these long-run variances play important roles in our sub-

sequent analysis.

3 Joint Broken Trend Model

We start by considering a time-series process yt with a first-order linear
trend and one possible change in the slope such that the trend function is
always joined at the time of the break, which we call the joint broken trend
model:

yt = α + βt+ γDTt(τ
∗) + ut, t = 1, ...., T (4)

ut = ρut−1 + εt, t = 2, ..., T, u1 = ε1, (5)

where DTt(τ
∗) = 1(t > T ∗)(t− T ∗) captures the eventual break in the slope

occurring at date T ∗ = bτ ∗T c with associated break fraction τ ∗ ∈ (0, 1). The
slope coefficient changes from β to β + γ at time T ∗. However, notice that
the trend function is continuous in every period including the date at which
the slope change occurs. The discontinuous case is considered in section 4.

3.1 Known Break Fraction

We start considering the case where the true break fraction,τ ∗, is known.
The unknown break fraction case will be subsequently discussed in Section
3.3. We also assume that the long-run variances, ω2

u and ω2
ε , are known in

the following analysis. We will relax this assumption in Section 3.3.
Suppose one knows that ut is I(0), with ρ = 0 in (5) and εt is Gaussian

white noise. Then the uniformly most powerful unbiased (optimal) test of
H0 against H1 is the standard t-test associated with γ when (4) is estimated
using OLS. The t-ratio t0(τ ∗), corrected for serial correlation in errors, can

1Hereafter I(1) implies ρ=1− c/T , with c=0 corresponding to the pure I(1) case
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be expressed as2

t0(τ ∗) =
γ̂(τ ∗)√

ω2
u

[{∑T
t=1 xDT,t(τ

∗)xDT,t(τ ∗)′
}−1

]
33

(6)

γ̂(τ ∗) =

{ T∑
t=1

xDT,t(τ
∗)xDT,t(τ

∗)′

}−1 T∑
t=1

xDT,t(τ
∗)yt


3

,

with xDT,t(τ
∗) = {1, t, DTt(τ ∗)}′.

On the other hand, if ut is known to be pure I(1), so that ρ = 1 in (5),
and ∆ut is a Gaussian white noise process, then the optimal test is based
on the t-statistic associated with γ when (4) is estimated with OLS in first
differences. That is, writing

∆yt = β + γDUt(τ
∗) + ∆ut, t = 2, ..., T, (7)

where DUt(τ
∗) = 1(t > T ∗), the optimal test rejects for large values of

|t1(τ ∗)|, where

t1(τ ∗) =
γ̂(τ ∗)√

ω2
ε

[{∑T
t=2 xDU,t(τ

∗)xDU,t(τ ∗)′
}−1

]
22

(8)

γ̂(τ ∗) =

{ T∑
t=2

xDU,t(τ
∗)xDU,t(τ

∗)′

}−1 T∑
t=2

xDU,t(τ
∗)∆yt


2

,

with xDU,t(τ
∗) = {1, DUt(τ ∗)}′.

Theorem 1 establishes the asymptotic properties of the |t0(τ ∗)| and |t1(τ ∗)|
statistics under both I(0) and I(1) errors.

Theorem 1. Let the time series process {yt} be generated according to
(4) and (5) under H0 : γ = 0, and let Assumption 1 hold.

(i) If ut in (5) is I(0) (i.e., |ρ| < 1), then (a) |t0(τ ∗)| d→ |J0(τ ∗)|,
where

J0(τ ∗) =

∫ 1

0
RT (r, τ ∗)dW (r)

{
∫ 1

0
RT (r, τ ∗)2dr}1/2

,

and (b) |t1(τ ∗)| = Op(T
−1/2).

2The notation [.]jj([.]j) is used to denote the jj’th (j’th) element of the matrix (vector)
within the square brackets.
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(ii) If ut in (5) is I(1), then (a) |t0(τ ∗)| = Op(T ),

and (b) |t1(τ ∗)| d→ |J1(τ ∗, c)|, where

J1(τ ∗, c) =

∫ 1

0
RU(r, τ ∗)dWc(r)

{
∫ 1

0
RU(r, τ ∗)2dr}1/2

,

where W (r) is a standard Brownian motion, and Wc(r) =
∫ r

0
e−(r−s)cdW (s)

denotes a standard Ornstein-Uhlenbeck (OU) process on [0,1], RT (r, τ ∗)
is the continuous-time residual from the projection of (r− τ ∗)1(r > τ ∗)
onto the space spanned by {1, r}, and RU(r, τ ∗) is the residual from the
projection of 1(r > τ ∗) onto {1}.

3.2 Unknown Break Fraction

In this section, we consider tests of a structural break in the trend function
at an unknown break fraction. Following Andrews (1993) we consider statis-
tics based on the maximum of the sequences of statistics {|t0(τ)|, τ ∈ Λ}
and {|t1(τ)|, τ ∈ Λ}, where Λ = [τL, τU ], with 0 < τL < τU < 1, and the
quantities τL and τU will be referred to as the trimming parameters, and it is
assumed throughout that τ ∗ ∈ Λ. The supremum functional allows us to test
for a break and determine the break date simultaneously. These statistics
are given by

t∗0 = sup
τ∈Λ
|t0(τ)| (9)

and
t∗1 = sup

τ∈Λ
|t1(τ)|, (10)

with associated break fraction estimators of τ ∗ given by τ̂ = arg supτ∈Λ |t0(τ)|
and τ̃ = arg supτ∈Λ |t1(τ)|, respectively, such that t∗0 ≡ |t0(τ̂)| and t∗1 ≡
|t1(τ̃)|. The break fraction estimators,τ̂ and τ̃ , are asymptotically equivalent
to the corresponding minimum sum of squares break fraction estimator of
Perron and Zhu (2005) and hence consistent under the alternative of fixed
break magnitude.

In the following theorem we establish the asymptotic properties of t∗0 and
t∗1 under both I(0) and I(1) environments.

Theorem 2. Let the time series process {yt} be generated according to
(4) and (5) under H0 : γ = 0, and let Assumption 1 hold.

(i) If ut is I(0), then (a)t∗0
d→ supτ∈Λ |J0(τ)|, and (b)t∗1 = Op(T

−1/2).

(ii) If ut is I(1), then (a)t∗0 = Op(T ), and (b)t∗1
d→ supτ∈Λ |J1(τ, c)|.
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Remark 2. From the results of part (i) of Theorem 2 it can be seen that
when ut is I(0), t∗1 converges in probability to zero. Similarly, from the results
in part (ii) of Theorem 2 it can be seen that when ut is I(1), t∗0 diverges.

In view of the large sample results in Theorem 2, we would encounter two
problems in practice. First, under H0, the appropriate test statistic (either t∗0
or t∗1) to obtain a non-degenerate limiting distribution and second the choice
of long run variance standardization (either ω2

ε or ω2
u) to establish a pivotal

limiting null distribution both depend on whether the errors are I(1) or I(0),
which is not known in practice. Moreover, in practice we would also need to
estimate either ω2

ε or ω2
u in order to yield a feasible testing procedure. In the

next section we will explore solutions to these issues.

3.3 Feasible Robust Tests for a Broken Trend

In this section we address the practical issues that exist in developing a
feasible test for a broken trend outlined at the end of the previous section.
In Section 3.3.1, we first consider the issue of long run variance estimation,
and examine the behavior of the estimators under both I(1) and I(0) errors.
In Section 3.3.2, we then use the results from section 3.3.1 to develop an
operational test against a broken trend in model (4)-(5) for the situation
where the order of integration is unknown. Section 3.3.2 also presents an
analysis of the asymptotic size properties of the proposed tests.

3.3.1 Long Run Variance Estimation

We now consider estimation of the long run variances ω2
ε (relevant under

I(1) errors) and ω2
u (relevant under I(0) errors). Estimation of ω2

ε is standard
and is explained first. However, in order to develop a feasible test we estimate
ω2
u using the Berk(1974)-type autoregressive spectral density estimator. The

large sample properties of these estimators are provided under both I(0) and
I(1) environments.

Estimation of ω2
ε

First we consider estimating ω2
ε when the errors are known to be I(1). Let

τ̂ be a consistent estimator of the true break fraction τ ∗. We first estimate
the following equation with OLS to get the residuals ε̂t(τ̂)

∆yt = β + γDUt(τ̂) + εt, t = 2, ..., T, (11)
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Nonparametric long-run variance estimator ω̂2
ε(τ̂) is then given by

ω̂2
ε(τ̂) = γ̂0(τ̂) + 2

T−2∑
j=1

k(j/l)γ̂j(τ̂), (12)

γ̂j(τ̂) = (T − 1)−1

T∑
t=j+2

ε̂t(τ̂)ε̂t−j(τ̂)

where k(.) is a kernel function with associated bandwidth parameter l. In
what follows we shall make use of the Bartlett kernel for k(.), such that
k(j/l) = 1− j/(l + 1), with bandwidth parameter l = O(T 1/4).

In Theorem 3, we now establish the large sample properties of ω̂2
ε(τ̂); since

in practice, the order of integration is unknown we detail the asymptotic
behavior of the estimator under both I(1) and I(0) errors.

Theorem 3. Let the conditions of Theorem 1 hold. Then

(i) If ut is I(1), then ω̂2
ε(τ̂)

p→ ω2
ε

(ii) If ut is I(0), then ω̂2
ε(τ̂) = Op(l

−1).

Estimation of ω2
u

We now consider estimating ω2
u in the case where the errors are known to

be I(0). Here we focus on Berk-type autoregressive spectral density estima-
tors in the estimation of ω2

u. The Berk-type estimator is the key in developing
a feasible test that works under both I(0) and I(1) errors. As will be seen in
the next section, estimation of ω2

u using an autoregressive framework allows
the t∗0 statistic to be stochastically bounded under both I(0) and I(1) errors
and enables us to utilize the union of rejections principle to develop a feasible
test.

We estimate ω2
u under the null H0 : γ = 0 and hence no trend break

dummy is included in the following regression

yt = α + βt+ ut, t = 1, ..., T (13)

We estimate equation (13) via OLS and get the residuals ût.The Berk-type
estimator ω̂2

u is then given by

ω̂2
u =

σ̂2

π̂2
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where π̂ and σ̂ are obtained from the OLS regression

∆ût = π̂ût−1 +
k−1∑
j=1

ψ̂j∆ût−j + êt, t = k + 2, ..., T (14)

with σ̂2 = (T − 2k − 1)−1
∑T

t=k+2 ê
2
t . As is standard, we require that the

lag truncation parameter, k, in (14) satisfies the condition that, as T →∞,
1/k + k3/T → 0.

In Theorem 4, we now establish the asymptotic properties of ω̂2
u under

both I(0) and I(1) environments.

Theorem 4. Let the conditions of Theorem 1 hold. Then under the null
H0 : γ = 0

(i) If ut is I(1), then T−2ω̂2
u

d→ ω2
εΦ(c)

(ii) If ut is I(0), then ω̂2
u

p→ ω2
u

where

Φ(c) =

{∫ 1

0
Q(r, c)2dr

}2

{∫ 1

0
Q(r, c)2dWc(r)

}2

and Q(r, c) is a continuous-time residual from the projection of Wc(r)
onto the space spanned by {1, r}.

Remark 3. Observe from part (ii) of Theorem 4 that ω̂2
u is a consistent

estimator of ω2
u under I(0) errors. It is also seen from part (i) of Theorem 4

that the Berk-type estimator diverges at a rate of T 2 which is crucial in our
construction of a feasible test, as explained in the next section.

3.3.2 Feasible Tests and Asymptotic Size

Having proposed suitable long run variance estimators and having estab-
lished their asymptotic properties, we are now in a position to define feasible
statistics for detecting a break in the trend function. The results of Theorem
2, along with the properties of the long run variance estimators described in
Theorems 3 and 4, suggest the following statistics, appropriate under I(1)
and I(0) errors, respectively:

S1 = sup
τ∈Λ
|t̂1(τ)| (15)

S0 = sup
τ∈Λ
|t̂0(τ)| (16)
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where

t̂1(τ) =
γ̂(τ)√

ω̂2
ε(τ)

[{∑T
t=2 xDU,t(τ)xDU,t(τ)′

}−1
]

22

γ̂(τ) =

{ T∑
t=2

xDU,t(τ)xDU,t(τ)′

}−1 T∑
t=2

xDU,t(τ)∆yt


2

,

and

t̂0(τ) =
γ̂(τ)√

ω̂2
u

[{∑T
t=1 xDT,t(τ)xDT,t(τ)′

}−1
]

33

γ̂(τ) =

{ T∑
t=1

xDT,t(τ)xDT,t(τ)′

}−1 T∑
t=1

xDT,t(τ)yt


3

.

In the following lemma we now establish the asymptotic properties of
the S1 and S0 statistics of (15) and (16), respectively, in both I(1) and I(0)
environments.

Lemma 1. Let the time series process {yt} be generated according to
(4) and (5) under H0 : γ = 0, and let Assumption 1 hold.

(i) If ut is I(0), then

(a) S0
d→ supτ∈Λ |J0(τ)|,

(b) S1 = Op

{
(l/T )1/2

}
.

(ii) If ut is I(1), then

(a) S0
d→ supτ∈Λ |K0(τ, c)|

Φ1/2(c)
, where

K0(τ, c) =

∫ 1

0
RT (r, τ)Wc(r)dr

{
∫ 1

0
RT (r, τ)2dr}1/2

(b) S1
d→ supτ∈Λ |J1(τ, c)|.

Asymptotic null critical values for S1 under I(1) errors with c = 0, and S0

under I(0) errors, are reported in Table 1, for the settings τL=0.1 and τU=0.9,
and for the significance levels ξ = 0.10, 0.05 and 0.01. The numerical results
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were obtained by simulation of the appropriate limiting distributions using
discrete approximations for T = 1, 000 and 10,000 replications using normal
IID(0, 1) random .

Critical Values
S1 S0 κξ

ξ = 0.10 2.741 2.268 1.0238
ξ = 0.05 3.024 2.570 1.0065
ξ = 0.01 3.565 3.139 1.0048

Note: The critical values for S0 and S1 are for the I(0) and I(1)(c = 0) cases,

respectively.

Table 1 Asymptotic critical values for nominal ξ-level S0 and S1 tests, and
asymptotic κξ values for U .

It is also of interest, given lack of knowledge concerning the order of
integration, to examine the size properties of S1 when c > 0, and also S0

under both c = 0 and c > 0. These results are presented in Table 2, again
obtained via direct simulation of the limit distributions in Lemma 1. The S1

test becomes increasingly under-sized as c increases. Therefore, employing
critical values which are appropriate for c = 0 will result in an under-sized
test when c > 0. Also, notice from part (i)-(b) of Lemma 1 that S1 converges
in probability to zero in I(0) case, and thus it is automatically under-sized
under I(0) errors.

Of particular interest is the behavior of S0 in the (local to) I(1) case. For
all significance levels, we see that the asymptotic size of S0 remains well below
the nominal size across all c. Therefore, employing critical values which are
appropriate for I(0) case will result in an under-sized test in the (local to)
I(1) case.

We now turn to consideration of a feasible test that can be applied in
the absence of knowledge concerning the order of integration. Our approach
deliberately exploits the under-sizing phenomenon seen in the S0 test in the
(local to) I(1) world, and is based on the union of rejections approach ad-
vocated by Harvey et al. (2009a) in a unit root testing context. Specifically,
we consider the union of rejections decision rule

U : Reject H0 if {S1 > κξcv
1
ξ or S0 > κξcv

0
ξ}

where cv1
ξ and cv0

ξ denote the ξ significance level asymptotic critical values
of S1 under I(1) (c = 0) errors and S0 under I(0) errors, respectively, and κξ
is a positive scaling constant whose role is made precise below.
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S1 S0 U
Panel A,ξ = 0.10
I(1), c = 0 0.1000 0.0331 0.100
I(1), c = 10 0.0054 0.0215 0.025
I(1), c = 20 0.0000 0.0174 0.017
I(1), c = 40 0.0000 0.0141 0.014
I(0) 0.0000 0.1000 0.088
Panel B,ξ = 0.05
I(1), c = 0 0.050 0.009 0.050
I(1), c = 10 0.001 0.006 0.006
I(1), c = 20 0.000 0.004 0.004
I(1), c = 40 0.000 0.003 0.003
I(0) 0.000 0.050 0.047
Panel C,ξ = 0.01
I(1), c = 0 0.01 0.0007 0.0100
I(1), c = 10 0.00 0.0004 0.0004
I(1), c = 20 0.00 0.0001 0.0001
I(1), c = 40 0.00 0.0001 0.0001
I(0) 0.00 0.0100 0.0096

Note: The rejections for S1 are computed using critical values for S1 under I(1), c =

0 errors; the rejections for S0 are computed using critical values for S0 under I(0)

errors.

Table 2 Asymptotic sizes of nominal ξ-level tests under I(1) and I(0) errors.

If the U decision rule was to be applied with κξ = 1 (i.e. without any
adjustment to the asymptotic critical values used for the constituent tests in
U), then the testing strategy would be asymptotically correctly sized under

I(0) errors, as S1
p→ 0. In the I(1) case, the Bonferroni inequality along with

the size results for S1 and S0 reported in Table 2, show that such a strategy
could only ever be (modestly) asymptotically over-sized when c=0; indeed,
the maximum possible asymptotic sizes at the 0.10, 0.05 and 0.01 nominal
significance levels are, respectively, 0.133, 0.059 and 0.0107 ,such that the
size distortions will be small. However, to ensure that U is an asymptotically
conservative testing strategy (i.e. asymptotically exactly correctly sized in
the case of I(0) errors and I(1) errors when c = 0, and always asymptotically
under-sized elsewhere), we can avoid any size distortions by suitably choosing
κξ.

Noting that the maximum size of U is realized when c = 0, choosing
κξ such that U has an asymptotic size of ξ in this case ensures that the
procedure will be conservative. We therefore obtain κξ by simulating the limit
distribution of max{S1, (cv

1
ξ/cv

0
ξ )S0}, calculating the ξ-level critical value for
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this distribution, say cvmaxξ , and then computing κξ = cvmaxξ /cv1
ξ . Values of

κξ for different ξ are shown in Table 1. Hereafter, reference to the decision
rule U assumes the κξ adjustment values from Table 1 are used.

Table 2 also provides asymptotic size results for U . As expected, the
testing strategy is correctly sized for I(1) errors when c = 0. When the errors
are I(1) with c > 0, U is conservative, in line with the size properties of the
constituent tests S1 and S0 discussed above. It is only slightly conservative
when the errors are I(0).

Remark 4. It is important to note that the union of rejections procedure
is only rendered viable due to specific behavior of the Berk-type estimator
ω̂2
u under I(1) errors, in that it diverges at a rate T 2; see Theorem 4(i). This

ensures that S0 is Op(1). If a typical kernel-based (e.g. Bartlett) long run
variance estimator with bandwidth l, say, growing at rate smaller than T was
used, then under I(1) errors, it is easy to show that ω̂2

u diverges at a rate
less than T 2, so that S0 diverges to ∞. In such a case, a union of rejections
approach is clearly precluded, because, regardless of the choice of κξ, its size
would approach one in the limit under I(1) errors.

3.3.3 Asymptotic Power

In this section, we first investigate the local asymptotic power properties
of our feasible test. In this case, we model the break magnitude as the
appropriate Pitman drifts under I(0) and I(1) errors respectively. The local
asymptotic power results demonstrate that the conservativeness of our test
under I(1) errors with c > 0 does not necessarily imply a loss of power. Next,
we show that our feasible test is consistent under the fixed break magnitude
by establishing the divergence rates of the constituent tests.

Consider first the case where the break magnitude, γ, is modeled as a local
alternative. In this case, we may partition H1 into two scaled components:
H1,0 : γ = ωuT

−3/2ϑ when ut is I(0), and H1,1 : γ = ωεT
−1/2ϑ when ut is

I(1), where in each case ϑ is a finite non-negative constant. As we shall
see below, these provide the appropriate Pitman drifts on γ under I(0) and
I(1) errors, respectively, to obtain nondegenerate and pivotal (except ϑ)
asymptotic distributions under the alternative hypothesis.

In the following theorem we establish the large sample behavior of the S1

and S0 statistics of (15) and (16), respectively, under the local alternative in
both I(1) and I(0) environments.

Theorem 5. Let the time series process {yt} be generated according to
(4) and (5), and let Assumption 1 hold.
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(i) If ut is I(0), then under H1,0 : γ = ωuT
−3/2ϑ

(a) S0
d→ supτ∈Λ |L00(τ, ϑ)|,

where

L00(τ, ϑ) = ϑ{
∫ 1

0
RT (r, τ)2dr}1/2 +

∫ 1

0
RT (r, τ)dW (r)

{
∫ 1

0
RT (r, τ)2dr}1/2

(b) S1 = Op

{
(l/T )(1/2)

}
.

(ii) If ut is I(1), then under H1,1 : γ = ωεT
−1/2ϑ

(a) S0
d→ supτ∈Λ |K01(τ, ϑ, c)|

Φ1/2(c)
,

where

K01(τ, ϑ, c) = ϑ{
∫ 1

0
RT (r, τ)2dr}1/2 +

∫ 1

0
RT (r, τ)Wc(r)dr

{
∫ 1

0
RT (r, τ)2dr}1/2

(b) S1
d→ supτ∈Λ |L11(τ, ϑ, c)|,

where

L11(τ, ϑ, c) = ϑ{
∫ 1

0
RU(r, τ)2dr}1/2 +

∫ 1

0
RU(r, τ)dWc(r)

{
∫ 1

0
RU(r, τ)2dr}1/2

Table 3 shows asymptotic local powers of S1,S0 and U , conducted at the
nominal 0.05-level. We consider the same settings as in Table 2, and the
same error specifications (i.e. I(1) errors with c ≥ 0 and I(0) errors). The
break magnitudes are benchmarked so that the powers of S1 for c = 0 in the
I(1) case, and S0 in the I(0) case, are equal to 0.50.

Consider first the behavior of S1. For I(1) errors, power is monotonically
decreasing as c increases. Note also that for I(0) errors, the power of S1 is
zero, in line with the results of Theorem 5(i)(b). The behavior of S0 is more
interesting: the power of S0 increases significantly as the errors move from
I(0) to I(1). The S0 test is quite powerful, indeed power is close to 1, under
the I(1) environment regardless of the value of c.

S1 S0 U
I(1), c = 0 0.500 0.987 0.997
I(1), c = 10 0.342 0.897 0.941
I(1), c = 20 0.140 0.898 0.933
I(1), c = 40 0.011 0.921 0.922
I(0) 0 0.500 0.500

Table 3 Asymptotic powers of nominal 0.05-level tests under I(1) and I(0)
errors.
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Inspection of the power performance of U shows that the conservative na-
ture of U for I(1) errors with c > 0, as seen in Table 2, does not translate into
poor power performance for these cases. The U test essentially capitalizes
on the relatively high power of the constituent tests. U generally displays
power very close to the better power of the two individual tests S1 and S0.
On the other hand, there are instances where the power of U exceeds that
of either of the constituent tests S1 and S0, resulting from the fact that the
rejections from S1 and S0 need not be perfectly correlated. The robust power
performance of U , therefore makes a strong case for using the modified union
of rejections approach in practice.

We now consider the asymptotic behavior of our feasible test under fixed
alternatives in order to establish the consistency of our tests. The following
theorem establishes the consistency of our tests under a fixed alternative of
the form H1 : γ 6= 0.

Theorem 6. Let the time series process {yt} be generated according to
(4) and (5) under H1 : γ 6= 0, and let Assumption 1 hold.

(i) If ut is I(0), then (a) S0 = Op((T/k)1/2), and (b) S1 = Op((lT )1/2),
thus (c) U = Op((lT )1/2).

(ii) If ut is I(1), then (a) S0 = Op(T
1/2), and (b) S1 = Op(T

1/2), thus (c)
U = Op(T

1/2).

Under H1 : γ 6= 0, it is seen from Theorem 6 that our feasible test, U , is
consistent at rate Op((lT )1/2) when ut is I(0) and at rate Op(T

1/2) when ut
is I(1).

4 Disjoint Broken Trend Model

Although trend breaks are the central concern of this paper, we might
also consider extending our analysis to allow (but not test for) a break in
level occurring at the same time as the break in trend. Therefore, we consider
the following model:

yt = α + βt+ δDUt(τ
∗) + γDTt(τ

∗) + ut, t = 1, ..., T (17)

and
ut = ρut−1 + εt, t = 2, ..., T, u1 = ε1. (18)

In what follows we will refer to (17) and (18) together as the disjoint broken
trend model. Notice that δ and γ capture the change, respectively, in the
level and slope coefficients of the series at time T ∗ = bτ ∗T c. The slope
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coefficient changes from β to β + γ and the level shifts from α to α + δ at
time T ∗. The trend function is discontinuous at the break date T ∗ if δ 6= 0.

The first-differenced form of the model is given by:

∆yt = β + δDt(τ
∗) + γDUt(τ

∗) + ∆ut, t = 2, ..., T, (19)

where Dt(τ
∗) = 1(t = T ∗ + 1). The null hypothesis of interest continues to

be H0 : γ = 0 against the two sided alternative: H1 : γ 6= 0. The interest lies
only on the break in the trend slope.

We propose our feasible test following the same steps as in Section 3. We
first consider the appropriate test statistics for I(0) and I(1) cases, respec-
tively, assuming that the true break fraction, τ ∗, is known. We consequently
redefine t̂0(τ ∗) as follows:

t̂0(τ ∗) =
γ̂(τ ∗)√

ω̂2
u(τ
∗)

[{∑T
t=1 xDT,t(τ

∗)xDT,t(τ ∗)′
}−1

]
44

, (20)

γ̂(τ ∗) =

{ T∑
t=1

xDT,t(τ
∗)xDT,t(τ

∗)′

}−1 T∑
t=1

xDT,t(τ
∗)yt


4

,

with xDT,t(τ
∗) = {1, t, DUt(τ ∗), DTt(τ ∗)}′ and ω̂2

u(τ
∗) calculated as in (14)

under the null H0 : γ = 0 using the Berk-type autoregressive spectral density
estimator. The residuals used in the estimation of the Berk-type long run
variance are the OLS residuals ût(τ

∗) = yt − α̂ − β̂t − δ̂DUt(τ ∗). Similarly,
t̂1(τ ∗) is redefined to be

t̂1(τ ∗) =
γ̃(τ ∗)√

ω̂2
ε(τ
∗)

[{∑T
t=2 xDU,t(τ

∗)xDU,t(τ ∗)′
}−1

]
33

, (21)

γ̃(τ ∗) =

{ T∑
t=2

xDU,t(τ
∗)xDU,t(τ

∗)′

}−1 T∑
t=2

xDU,t(τ
∗)∆yt


3

,

with xDU,t(τ
∗) = {1, Dt(τ

∗), DUt(τ
∗)}′, and ω̂2

ε(τ
∗) calculated nonparametri-

cally as in (12) with bandwidth parameter l = O(T 1/4) but using the OLS
residuals ε̂t(τ

∗) = ∆yt − β̃ − δ̃Dt(τ
∗)− γ̃(τ ∗)DUt(τ

∗).
In order to accommodate unknown break point, we again consider statis-

tics based on the maximum of the sequences of statistics {|t̂0(τ)|, τ ∈ Λ} and
{|t̂1(τ)|, τ ∈ Λ}. These statistics are given by:

S0 = sup
τ∈Λ
|t̂0(τ)| (22)
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S1 = sup
τ∈Λ
|t̂1(τ)| (23)

As in SV, the null hypothesis H0 must be restated as H0 : γ = δ = 0 in
the case of unknown break fraction in order to obtain a pivotal limiting null
distribution for our test statistic. The following theorem, whose proof is a
straightforward generalization of those in Section 3 and is therefore omitted,
details the large sample behavior of the redefined S0 and S1 statistics under
H0.

Theorem 7. Let the time series process {yt} be generated according to
(17) and (18) under H0 : γ = δ = 0, and let Assumption 1 hold.

(i) If ut is I(0), then (a) S0
d→ supτ∈Λ |JU,0(τ)|, (b) S1 = Op

{
(l/T )1/2

}
.

where

JU,0(τ) =

∫ 1

0
RTU(r, τ ∗)dW (r)

{
∫ 1

0
RTU(r, τ ∗)2dr}1/2

.

(ii) If ut is I(1), then (a) S0
d→ supτ∈Λ

∣∣∣∣KU,0(τ, c)

Φ1/2(c, τ)

∣∣∣∣, (b) S1
d→ supτ∈Λ |J1(τ, c)|,

where

KU,0(τ, c) =

∫ 1

0
RTU(r, τ)Wc(r)dr

{
∫ 1

0
RTU(r, τ)2dr}1/2

, and

Φ(c, τ) =

{∫ 1

0
Q(r, c, τ)2dr

}2

{∫ 1

0
Q(r, c, τ)2dWc(r)

}2

and Q(r, c, τ) is a continuous-time residual from the projection of Wc(r)
onto the space spanned by {1, r, 1(r > τ)}, andRTU(r, τ) is a continuous-
time residual from the projection of (r − τ)1(r > τ) onto the space
spanned by {1, r, 1(r > τ)}.

Remark 5. Observe from the result given in part (ii)(b) of Theorem 7
that the limiting distribution of S1 from the disjoint broken trend model is
identical to that for joint broken trend model given in Lemma 1 (ii)(b). This
is because the regressor Dt(τ) has an asymptotically negligible effect on S1.

Critical Values
S1 S0 κξ

ξ = 0.10 2.741 2.901 1.0288
ξ = 0.05 3.024 3.163 1.0114
ξ = 0.01 3.565 3.655 1.00

Note: The critical values for S0 and S1 are for the I(0) and I(1)(c = 0) cases, respectively.

Table 4 Asymptotic critical values for nominal ξ-level S0 and S1 tests, and
asymptotic κξ values for U .
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Asymptotic null critical values for S1 under I(1) errors with c = 0, and
S0 under I(0) errors, are reported in Table 4, for the settings τL = 0.1 and
τU = 0.9, and for the significance levels ξ = 0.10, 0.05 and 0.01. Table 5
presents, similar to Table 2, the asymptotic size properties of S1 when c > 0,
and also S0 under both c = 0 and c > 0. From Table 5 we see that the S1 test
becomes increasingly under-sized as c increases. Similarly, the asymptotic
size of S0 remains well below the nominal size across all c. This under-sizing
phenomenon seen in the S0 test under the (local to)I(1) errors and in the S1

test when c > 0 or errors are I(0) renders the union of rejections principle
viable. Specifically, our feasible test which is based on the union of rejections
decision rule can be stated as follows:

U : Reject H0 if {S1 > κξcv
1
ξ or S0 > κξcv

0
ξ}

where cv1
ξ and cv0

ξ denote the ξ significance level asymptotic critical values
of S1 under I(1) (c = 0) errors and S0 under I(0) errors, respectively, and κξ
is as explained in Section 3.3.2.

S1 S0 U
Panel A,ξ = 0.10
I(1), c = 0 0.1000 0.0281 0.100
I(1), c = 10 0.0054 0.0037 0.008
I(1), c = 20 0.0000 0.0033 0.003
I(1), c = 40 0.0000 0.0022 0.002
I(0) 0.0000 0.1000 0.082
Panel B,ξ = 0.05
I(1), c = 0 0.050 0.0083 0.050
I(1), c = 10 0.001 0.0014 0.002
I(1), c = 20 0.000 0.0013 0.001
I(1), c = 40 0.000 0.0011 0.001
I(0) 0.000 0.0500 0.044
Panel C,ξ = 0.01
I(1), c = 0 0.01 0.0005 0.010
I(1), c = 10 0.00 0.0001 0.000
I(1), c = 20 0.00 0.0001 0.000
I(1), c = 40 0.00 0.0001 0.000
I(0) 0.00 0.0100 0.010

Note: The rejections for S1 are computed using critical values for S1 under I(1), c =

0 errors; the rejections for S0 are computed using critical values for S0 under I(0)

errors.

Table 5 Asymptotic sizes of nominal ξ-level tests under I(1) and I(0) errors.
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The asymptotic size results for our feasible test, U , are also presented in
Table 5. As expected, the testing strategy is correctly sized for I(1) errors
when c = 0. When the errors are I(1) with c > 0, U is conservative, in line
with the size properties of the constituent tests S1 and S0 discussed above.
It is also almost correctly sized when the errors are I(0).

We now turn to consistency properties of our feasible test. We consider
fixed alternatives of the form H1 : γ 6= 0, with δ now unrestricted. In the
following theorem, we show that our feasible test is consistent under a fixed
alternative by establishing the divergence rates of our feasible test under both
I(0) and I(1) errors.

Theorem 8. Let the time series process {yt} be generated according to
(17) and (18) under H1 : γ 6= 0, and let Assumption 1 hold.

(i) If ut is I(0), then (a) S0 = Op((T/k)1/2), and (b) S1 = Op((lT )1/2),
thus (c) U = Op((lT )1/2).

(ii) If ut is I(1), then (a) S0 = Op(T
1/2), and (b) S1 = Op(T

1/2), thus (c)
U = Op(T

1/2).

The proof of theorem is very similar to that of Theorem 6 and, hence, is
omitted. Under H1, when ut is I(0), we obtain that U is consistent at rate
Op((lT )1/2), while if ut is I(1), U is consistent at rate Op(T

1/2).

5 Finite Sample Results

In this section we report the finite sample size and power performances
of our structural break tests. We employ 10% trimming (τL = 0.1, τU = 0.9)
throughout our Monte Carlo simulations. All the results reported in this
section are for two-sided tests conducted at the 0.05 nominal asymptotic
significance level, and were computed over 5,000 replications.

We employ the following data generating process (DGP), which is a sim-
plified version of (17) and (18), to carry out our simulations

yt = δDUt(τ
∗) + γDTt(τ

∗) + ut, t = 1, ..., T (24)

ut = ρut−1 + εt, t = 2, ..., T, u1 = ε1. (25)

where εt ∼ NIID(0, 1). In Section 5.1, we provide the finite sample size
properties of our proposed tests and compare the results to those of the
tests proposed in HLT. In Section 5.2, we subsequently investigate the finite
sample power properties of our test, again relative to the tests of HLT. We
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form our union of rejections decision rule as detailed in Section 3.3 for the
joint broken trend model, and as detailed in Section 4 for the disjoint case.

Here we briefly outline the tests proposed by HLT before we report the
finite sample results. As in this paper, HLT also utilize the two test statistics
S0 and S1, the supremum of the t-ratios for the levels and the differenced data,
respectively. The first difference is that HLT normalize the t-statistics for the
levels data using a nonparametric estimator of the long run variance ω2

u, with
bandwidth parameter l = O(T 1/4). The S0 statistic, thus, diverges to infinity
under I(1) errors with this choice of the long run variance estimator. Second,
instead of using a union of rejections principle, which is infeasible due to their
choice of the long run variance estimator, they take a weighted average of
the S0 and S1 statistics.They adopt the stationarity test statistics of KPSS,
Q0 and Q1, calculated from the residuals of the levels data {ût(τ ∗)}Tt=1 and
the differenced data {ε̂t(τ ∗)}Tt=2 respectively to form their weight function,
λ(., .), of the form

λ(Q0(τ ∗), Q1(τ ∗)) = exp[−{gQ0(τ ∗)Q1(τ ∗)}2], (26)

where

Q0(τ ∗) =

∑T
t=1

(∑t
i=1 ûi(τ

∗)
)2

T 2ω̂2
u(τ
∗)

, Q1(τ ∗) =

∑T
t=2

(∑t
i=2 ε̂i(τ

∗)
)2

(T − 1)2ω̂2
ε(τ
∗)

and g is a positive constant. Finally, the constant mξ is chosen such that
for a given significance level, ξ, the critical values for the test coincide under
I(0) and I(1) errors. The robust structural break test statistic of HLT, tλ,
can then be written as

tλ = {λ(Q0(τ ∗), Q1(τ ∗))× S0}+mξ {[1− λ(Q0(τ ∗), Q1(τ ∗))]× S1} . (27)

HLT show that under I(0) errors tλ = S0 + op(1) and under I(1) errors
tλ = mξS1 + op(1).

5.1 Size Properties

Table 6 reports the empirical size performance of our U test and tλ test of
HLT for each of joint and disjoint broken trend models. These we obtained
by setting δ = γ = 0 in (24). The AR parameter in (25) were varied over
ρ = 1 − (c/T ) for c ∈ {0, 10, 20, 50, T}. We consider three different sample
sizes; T = 100, T = 150, and T = 300. In the computation of our U
test statistic, the long run variance estimator ω̂2

u uses values of k (in (14))
determined according to the BIC criterion with kmax = b4(T/100)1/4c. We
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set the bandwidth parameter l = b4(T/100)1/4c in the computation of all
other long variance estimators. Finally, we set g = 250 in (25), since it gives
rise to the most accurate weights for both I(1) and I(0) cases.

Joint T=100 T=150 T=300
U tλ U tλ U tλ

c=0 9.0% 21.3% 8.6% 16.2% 6.7% 10.2%
c=10 2.8% 15.4% 2.6% 13.0% 2.0% 8.8%
c=20 2.6% 14.9% 2.5% 16.3% 1.7% 14.5%
c=50 3.6% 10.7% 3.4% 16.7% 3.0% 20.8%
c=T 5.2% 5.4% 5.0% 5.7% 5.1% 6.1%
Disjoint T=100 T=150 T=300

U tλ U tλ U tλ
c=0 8.4% 28.1% 7.8% 22.9% 5.7% 15.4%
c=10 2.2% 19.9% 2.1% 18.0% 1.2% 13.9%
c=20 2.3% 17.6% 2.0% 20.9% 1.2% 22.1%
c=50 3.2% 11.7% 2.4% 18.2% 1.3% 24.8%
c=T 4.6% 6.6% 3.8% 6.2% 4.4% 5.3%

Table 6 Empirical sizes of nominal 0.05 level tests
In the case of I(1) errors (c = 0), Table 6 shows that our U test is slightly

oversized in finite samples. However, we see that the size distortions get
smaller as the sample size increases. On the other hand, when the errors are
I(0) (c > 0) the U test seems to be undersized, except for the white noise
case (c = T ). The undersizing effect is more pronounced as the persistence
and the sample size increases. Also, the undersizing phenomenon is more
obvious in the disjoint broken trend model. However, keep in mind that all
these finite sample results are consistent with the asymptotic properties of
the U test given in Tables 2 and 5.

The finite sample size properties of the tλ test can also be seen in Table 6.
The tλ test is oversized for persistent data regardless of the sample size and
the model. The size distortion can be as high as 25% at a 5% nominal level.
The main source of the size distortions is the way the tλ test is constructed.
In finite samples, the weight function does not pick the appropriate statis-
tic quite accurately3 and since the S0 test statistic is large (asymptotically
unbounded) for persistent data, the tλ test rejects too often.

A simple comparison of the results from Table 6 favors our U test over
the tλ test of HLT in terms of the finite sample size. In the next section, we
compare the finite sample power properties of these two tests.

3For highly persistent data, the appropriate test statistic is S1
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5.2 Power Properties

Figures 1-2 and 3 present the empirical power performance of the tests.
The data were generated according to (24) and (25) for a grid of γ values,
covering the range [0, 1] in steps of 0.1. In order to save some space, we only
present results for the joint broken trend model, where we set δ = 0. The
results for the disjoint broken trend model are qualitatively similar and are
available upon request. We consider two break fractions τ ∗ ∈ {0.25, 0.5} and
again let the AR parameter vary over ρ = 1−(c/T ) for c ∈ {0, 10, 20, 50, T} in
(25). The parameters values used in the estimation of the long run variances
and weight function are the same as in the size simulations.

Consider first the left panels of Figures 1-2 and 3. The power of tλ is
slightly higher than U for small values of γ and the two tests are equivalent
in terms of power for medium to large values of γ. However, these power
advantages of tλ over U for small γ can be attributed to the size distortions
of tλ. Because the tλ tests are oversized (see Table 6), we also report size-
adjusted powers. The size-adjusted power curves are given on the right panels
of Figures 1-2 and 3. The main conclusion drawn from these results is that
any power gain of tλ over U is only due to the oversizing property of tλ. This
is not surprising; since both U and tλ utilize the same statistics (S0 and S1)
in their construction, we don’t expect one test to be superior in extracting
more information from the data regarding a potential break.

The power functions for U do not appear to depend to any noticeable
degree on the location of the break. Comparing results between τ ∗ = 0.5
and τ ∗ = 0.25 we see that there is no power loss as the break is located away
from the middle of the sample. This is also supported by an unreported
simulation where we set τ ∗ = 0.75. Consequently, our U test is as powerful
for early and late breaks as for the mid-point breaks.

6 Conclusion

In this paper we present tests for the presence of a structural break in the
trend slope of a univariate time series which do not require knowledge of the
form of serial correlation in the data and are valid regardless of the errors
being I(0) or I(1). We consider two models: a joint and a disjoint broken
trend model. We propose a union of rejections based procedure using two
statistics; one appropriate for stationary errors and the other for integrated
errors. We provide representations for and critical values from the asymp-
totic distributions of our proposed statistics (also for the union of rejections
approach) under the null hypothesis of no trend break, together with
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(a) c = 0,τ∗ = 0.5 (b) c = 0,τ∗ = 0.5, size-adjusted

(c) c = 0,τ∗ = 0.25 (d) c = 0,τ∗ = 0.25, size adjusted

(e) c = 10,τ∗ = 0.5 (f) c = 10,τ∗ = 0.5, size-adjusted

Figure 1: Power: Joint Broken Trend Model, T = 150, U :—o—, tλ:—
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(a) c = 10,τ∗ = 0.25 (b) c = 10,τ∗ = 0.25, size-adjusted

(c) c = 20,τ∗ = 0.5 (d) c = 20,τ∗ = 0.5, size adjusted

(e) c = 20,τ∗ = 0.25 (f) c = 20,τ∗ = 0.25, size-adjusted

Figure 2: Power: Joint Broken Trend Model, T = 150, U :—o—, tλ:—
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(a) c = 50,τ∗ = 0.5 (b) c = 50,τ∗ = 0.5, size-adjusted

(c) c = T ,τ∗ = 0.5 (d) c = T ,τ∗ = 0.25

Figure 3: Power: Joint Broken Trend Model, T = 150, U :—o—, tλ:—
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representations for and numerical evaluation of their asymptotic local power
functions under both I(1) and I(0) environments. We also provide finite
sample results using Monte Carlo simulations and these simulations demon-
strate that our proposed method performs well in small samples, regardless
of the (unknown) order of integration of the data.

It is also straightforward to extend our method to test for multiple trend
breaks or to sequentially test for l versus l + 1 breaks in the trend function.
However, the main focus of this paper is on single trend break cases. Single
trend break tests can be quite useful in policy analysis. For example, our
robust tests can be employed to evaluate the impact of a one time policy
change or a new regulation on a trending variable, without the need to know
whether the data is generated by a stationary or integrated process. Over-
all, we believe that the robust tests we propose in this paper should prove
useful in practical applications, particularly when a possible trend break in
a macroeconomic or financial data is an important consideration itself, and
where there is uncertainty regarding the order of integration of the data.
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Appendix

In what follows, due to invariance of the statistics concerned, we can set
α = β = 0 without loss of generality

Proof of Theorem 1.
(i)(a) Using the Frisch-Waugh-Lovell Theorem (FWLT) we can write

t0(τ ∗) in the form

t0(τ ∗) =

{
T−3/2

∑
RTt(τ

∗)ut
T−3

∑
RTt(τ ∗)2

}
× 1√

ω2
u/T

−3
∑
RTt(τ ∗)2

,

where RTt(τ
∗), t = 1, ..., T , are the OLS residuals from the regression of

DTt(τ
∗) onto 1 and t. We establish the following weak convergence results

using the standard time-series properties,

t0(τ ∗)
d→

{
ωu
∫ 1

0
RT (r, τ ∗)dW (r)∫ 1

0
RT (r, τ ∗)2dr

}
× 1√

ω2
u/
∫ 1

0
RT (r, τ ∗)2dr

,

whereW (r) is a standard Brownian motion, defined via, ω−1
u T−1/2

∑bTrc
t=1 ut

d→
W (r).

(b) Again appealing to the FWLT, t1(τ ∗) can be expressed as

T 1/2t1(τ ∗) =

{ ∑
RUt(τ

∗)∆ut
T−1

∑
RUt(τ ∗)2

}
× 1√

ω2
ε/T

−1
∑
RUt(τ ∗)2

where RUt(τ
∗),t = 1, ..., T , are the OLS residuals from the regression of

DUt(τ
∗) onto 1. RUt(τ

∗) can also be written as

RUt(τ
∗) =

{
τ ∗ − 1, t ≤ T ∗

τ ∗ t > T ∗

which implies that
∑
RUt(τ

∗)∆ut = τ ∗uT + uT ∗ + (1− τ ∗)u1 = Op(1), since
ut is I(0). Entirely standard results, all other terms on the right hand side
are also Op(1). As a result,T 1/2t1(τ ∗) = Op(1), which establishes the result
in (b).

(ii) (a) We have that

T−1t0(τ ∗) =

{
T−5/2

∑
RTt(τ

∗)ut
T−3

∑
RTt(τ ∗)2

}
× 1√

ω2
u/T

−3
∑
RTt(τ ∗)2

,

Consequently, since all the stochastic terms appearing above are of Op(1)
with nondegenerate limiting distributions, it follows that T−1t0(τ ∗) = Op(1).

Turning to the result in (b), observe that
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t1(τ ∗) =

{
T−1/2

∑
RUt(τ

∗)∆ut
T−1

∑
RUt(τ ∗)2

}
× 1√

ω2
ε/T

−1
∑
RUt(τ ∗)2

d→

{
ωε
∫ 1

0
RU(r, τ ∗)dWc(r)∫ 1

0
RU(r, τ ∗)2dr

}
× 1√

ω2
ε/
∫ 1

0
RU(r, τ ∗)2dr

,

using standard results.Rearranging delivers the stated result in (b).

Proof of Theorem 2. The proof of (i)(a) and (ii)(b) follows by applying
the Continuous Mapping Theorem as in Zivot and Andrews (1992) to show
the convergence in distribution from the space D[0, 1] to the space C(0, 1).
t∗0 and t∗1 statistics can be written as continuous functionals of the processes(
T−3

∑
RTt(.)

2, T−3/2
∑
RTt(.)ut

)′
and

(
T−1

∑
RUt(.)

2, T−1/2
∑
RUt(.)∆ut

)′
,

respectively. Using similar arguments from Zivot and Andrews (1992) we can
show the joint weak convergence of these processes:(
T−3

∑
RTt(.)

2, T−3/2
∑
RTt(.)ut

)′ d→
(∫ 1

0
RT (r, .)2dr,

∫ 1

0
RT (r, .)dW (r)

)′
(
T−1

∑
RUt(.)

2, T−1/2
∑
RUt(.)∆ut

)′ d→
(∫ 1

0
RU(r, .)2dr,

∫ 1

0
RU(r, .)dWc(r)

)′
The stated results in Theorem 2 (i)(a) and (ii)(b) then follow directly from
Theorem 1 (i)(a) and (ii)(b),respectively, using applications of the CMT, not-
ing the continuity of the sup function. The result in Theorem 2 (i)(b) follows
from Theorem 1 (i)(b) and the result that t1(τ) = Op(T

−1/2) uniformly in τ .
Finally, for the result in Theorem 2 (ii)(a) we appeal to Theorem 1 (ii)(a)
and the fact that t0(τ) = Op(T ) uniformly in τ .

Proof of Theorem 3. For the proofs of part (i) and (ii) we use the fact
that ε̂t is asymptotically identical to ∆ut and that τ̂ is consistent for τ ∗.

(i) ω̂2
ε(τ̂)

p→ limT→∞T
−1E

(∑T
t=2 ∆ut

)2

= ω2
ε , by the standard results for

the nonparametric kernel estimators.

(ii) ω̂2
ε(τ̂)

p→ limT→∞T
−1E

(∑T
t=2 ∆ut

)2

= 0, since ∆ut is over-differenced

when ut is I(0). However, it follows from Leybourne, Taylor, and Kim

(2007) that lω̂2
ε

p→ −2
∑∞

s=1 sψ
′
s where ψ′s = E(∆ut∆ut−s). Consequently,

lω̂2
ε = Op(1), which establishes the result in (ii).

Proof of Theorem 4.
(i) For r ∈ Λ, straightforward extensions of results in Perron and Vogel-

sang (1992) yield the result that T−1/2ûbrT c
d→ ωεQ(r, c) where Q(r, c) is a

continuous time residual from the projection of Wc(r) onto the space spanned
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by {1, r}. Then, from (14) we obtain, using the CMT, that

T π̂
d→ ση
ωε

∫ 1

0
Q(r, c)dWc(r)∫ 1

0
Q(r, c)2dr

and, since σ̂2 p→ σ2
η = 1, we therefore obtain that

T−2ω̂2
u =

σ̂2

(T π̂)2

d→ ω2
ε

{∫ 1

0
Q(r, c)2dr

}2

{∫ 1

0
Q(r, c)2dWc(r)

}2 = ω2
εΦ(c)

as required.
(ii)Under the null, ût is asymptotically identical to ut, hence ω̂2

u behaves

asymptotically as if calculated directly from ut, and therefore ω̂2
u

p→ ω2
u.

Proof of Lemma 1.
(i)(a) The proof of Lemma 1 (i)(a) follows from the results in Theorem 1

(i)(a), Theorem 2 (i)(a) and Theorem 4 (ii) .
(b) The proof of Lemma 1 (i)(b) is a trivial extension to the results in

Theorem 1 (i)(b), Theorem 2 (i)(b) and Theorem 3 (ii) combined with the

result that lω̂2
ε(τ)

p→ −2
∑∞

s=1 sψ
′
s uniformly in τ .

(ii)In order to establish the result in (a), notice first that

t̂0(τ) =

{
T−5/2

∑
RTt(τ)ut

T−3
∑
RTt(τ)2

}
× 1√

T−2ω̂2
u/T

−3
∑
RTt(τ)2

,

From standard weak convergence results, namely, the CMT and the Func-
tional Limit Theorem (FCLT), we can establish that:

t̂0(τ)
d→

{
ωε
∫ 1

0
RT (r, τ)Wc(r)dr∫ 1

0
RT (r, τ)2dr

}
× 1√

ω2
εΦ(c)/

∫ 1

0
RT (r, τ)2dr

Then the rest follows from the arguments given in Theorem 2.
(b)The proof of Lemma 1 (ii)(b) follows from the results in Theorem 1

(ii)(b), Theorem 2 (ii)(b) and Theorem 3 (i).

Proof of Theorem 5. In order to establish the results in Theorem 5,
notice first that under H1,0 and H1,1 the level breaks are of order op(1), and
hence they have no asymptotic effect on ω̂2

u. Then, the proof of Theorem 5
follows from trivial extensions to the results in Theorem 1, Theorem 2 and
Lemma 1. The proof is therefore omitted in the interest of brevity.

Proof of Theorem 6. We omit the constant and trend regressors from
(4) and the constant regressor from (7), for technical expediency, since our
focus is only on establishing the orders in probability of the statistics under
H1. These particular regressors have no effect on any of the orders involved,
but just introduce algebraic complexities.
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(i) To establish the result in part (a), we follow the same steps outlined
in Harvey et al.(2009b). We first derive the order of t̂0(τ ∗) under the fixed
alternative H1 : γ 6= 0. Notice first that

(T/k)−1/2t̂0(τ ∗) =

{
γ +

∑
DTt(τ

∗)ut∑
DTt(τ ∗)2

}
× 1√

T−2k−1ω̂2
u/T

−3
∑
DTt(τ ∗)2

,

= {γ + op(1)}Op(1) = Op(1)

which follows from Lee et.al (1997) that ω̂2
u = Op(T

2k) (since the long run
variance is estimated ignoring the existing break) and that T−3

∑
DTt(τ

∗)2 →
(1 − τ ∗)3/3. Now, it is straightforward to establish that for any τ ∈ Λ, we
may write

(T/k)−1/2|t̂0(τ)| =

√(
T−3

∑
y2
t

σ̂2(τ)
− T−2

)
× σ̂2(τ)

T−2k−1ω̂2
u

,

where σ̂2(τ) = T−1
∑T

t=1 ût(τ)2 and ût(τ) = yt− α̂− β̂t− γ̂(τ)DTt(τ). From
above we see that the stated result will hold if σ̂2(τ̂) − σ̂2(τ ∗) is asymp-
totically negligible. Following the results in Harvey et al. (2009b) we now
demonstrate that σ̂2(τ̂) − σ̂2(τ ∗) = Op(T

−1). It is straightforward to show
that

σ̂2(τ̂)− σ̂2(τ ∗) = −T−1

[
(
∑
DTt(τ̂)yt)

2∑
DTt(τ̂)2

− (
∑
DTt(τ

∗)yt)
2∑

DTt(τ ∗)2

]
,

from which it is easy to demonstrate that the dominant term of the right
hand side of above equality is of the form

−γ2T−1

[
(
∑
DTt(τ̂)DTt(τ

∗))2∑
DTt(τ̂)2

−
∑
DTt(τ

∗)2

]
.

After some lengthy manipulations, the dominant term of above expression
can be shown to be given by

−γ2 (d̂T )2

36
(τ̂ − 1)3(4τ ∗ − τ̂ − 3),

where d̂ = τ ∗ − τ̂ . From Theorem 3 of Perron and Zhu (2005, p.75) we have
that d̂ = Op(T

−3/2) since our break fraction estimator τ̂ can be shown to
have the same rate of consistency as the minimum sum of squares break
fraction estimator of Perron and Zhu(2005). As a result, the dominant
term above is Op(T

−1), thus σ̂2(τ̂) − σ̂2(τ ∗) = Op(T
−1). Consequently,

T−3/2(
∣∣t̂0(τ̂)

∣∣− ∣∣t̂0(τ ∗)
∣∣) p→ 0, which establishes the result in (a).

The proof of the result in (b) directly follows from the Proof of Theorem
3 (i)(b) in Harvey et al. (2009b).
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(ii)(a) We again establish first the behavior of t̂0(τ ∗) under H1. Observe
first that

T−1/2t̂0(τ ∗) =

{
γ +

∑
DTt(τ

∗)ut∑
DTt(τ ∗)2

}
× 1√

T−2ω̂2
u/T

−3
∑
DTt(τ ∗)2

,

= {γ + op(1)}Op(1) = Op(1)

which again follows from Lee et.al (1997) that T−2ω̂2
u = Op(1). Again, for

any τ ∈ Λ, we may write

T−1/2|t̂0(τ)| =

√(
T−3

∑
y2
t

T−1σ̂2(τ)
− T−1

)
× T−1σ̂2(τ)

T−2ω̂2
u

,

so again we need to establish the behavior of the difference between the OLS
variance estimators evaluated at τ ∗ and τ̂ . Using the results from part (i)(a),
we obtain that the dominant term of T−1(σ̂2(τ̂)− σ̂2(τ ∗)) is given by

−γ2 d̂
2T

36
(τ̂ − 1)3(4τ ∗ − τ̂ − 3),

Next, again utilizing the results from Theorem 3 of Perron and Zhu (2005),
we may show that d̂ = Op(T

−1/2) and, hence, we obtain that T−1(σ̂2(τ̂) −
σ̂2(τ ∗)) = Op(1). So it follows that T−1/2(

∣∣t̂0(τ̂)
∣∣ − ∣∣t̂0(τ ∗)

∣∣) = Op(1), estab-
lishing (a).

The proof of the result in (b) again, directly follows from the Proof of
Theorem 3 (ii)(b) in Harvey et al. (2009b).
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