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Abstract

This paper studies the mechanism design problem for the class of Bayesian

environments where agents do care for the well-being of others. For these en-

vironments, we fully characterize interim efficient mechanisms and examine

their properties. This set of mechanisms is compelling, since interim efficient

mechanisms are the best in the sense that there is no other mechanism which

generates unanimous improvement. For public good environments, we show

that these mechanisms produce public goods closer to the efficient level of

production as the degree of altruism in the preferences increases. For private

good environments, we show that altruistic agents trade more often than

selfish agents.
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1 Introduction

A group of individuals must choose an alternative from the set of possible alterna-

tives and must decide how to arrange monetary transfers. Initially, each agent has

private information about each possible alternative. An agent’s utility for a given

alternative depends not only on her own material utility but also on the welfare

of other agents. This implies agents are unselfish or altruistic. In this framework,

we characterize the most efficient mechanisms within the mechanisms that satisfy

incentive and feasibility constraints.

The assumption of self interest is problematic. Self interest hypothesis states

that preferences among allocations depend only on an agent’s own material well

being. Experimental results suggest that people often do care for the well-being

of others and have other regarding preferences. For example, there is more con-

tribution to public goods than purely selfish maximization can lead us to expect.

Moreover, people should not vote in elections, contribute to public television or

share files in peer-to-peer networks if they are purely self interested. See Ledyard

(1995) for a survey on public goods which documents several other anomalies. Simi-

lar anomalous results are also observed in private goods environments. For example,

in games like the ultimatum game, the dictator game, and the gift exchange game,

one player has a strictly dominant strategy if the player is self interested but he

or she does not choose this selfish strategy. See also Fehr and Schmidt (2006) for

more experimental evidence on unselfish preferences. Given these observations, I

ask a basic question: How does the existence of agents exhibiting interdependent

preferences change the mechanism design problem?

There exists an extensive literature on mechanism design. We refer the reader

to Jackson (2003) for a survey on mechanism design literature. In previous studies

the main focus is on either (the impossibility of) efficient or optimal mechanism

design with selfish agents. In contrast to previous literature, we are interested in

characterizing interim efficient mechanisms with unselfish agents. Interim is used

to denote the informational time frame. We assume that all decisions, including

whether to change the mechanism, are made at the interim stage. Interim efficiency

is a natural extension of efficiency to incomplete information environments. If

a mechanism is interim efficient, then it can never be common knowledge that

there is another feasible mechanism which makes some types of agents better off

without hurting other types of agents. This implies that any other mechanism
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would be unanimously rejected by all agents and should thus not be observed

in practice. We show that these mechanisms correspond to decision rules based

on modified virtual cost-benefit criterion, together with the appropriate incentive

taxes. Moreover, we show that interim efficient decisions depend on the social

concerns of the agents even though classical efficient decisions do not depend on

the social concerns of the agents. There are a few papers that explore the properties

of interim efficient allocation rules for standard mechanism design environments.

See Wilson (1985) and Gresik (1991) for a characterization of ex ante efficient

mechanisms for bilateral trade environments (double auctions), and Ledyard and

Palfrey (2007) for a characterization of interim efficient mechanisms for public good

environments.

We also provide applications for both public and private goods environments.

In our applications, efficient decisions are independent of the social concerns of the

agents. However, we show that interim efficient mechanisms produce public goods

more often as the degree of altruism in the preferences goes up. That is, inefficiencies

in public good provision decreases as the agents care more about the welfare of the

other agents. For bilateral trade environments, we show that altruistic agents trade

more often than selfish agents. This means that there are some information states

of the economy where it is optimal to trade but selfish agents will not trade and

altruistic agents will trade. Moreover, altruistic agents do not trade when it is not

optimal to trade.

The remainder of the paper is organized as follows. In the next section, we de-

scribe the environment and introduce the basic notation. In Section 3 we formulate

the set of constraints and provide necessary and sufficient conditions for incentive

compatibility and individual rationality. The tools of mechanism design are used to

provide these necessary and sufficient conditions. Then, we present the character-

ization results and proofs. Section 4 provides applications of our characterization

for both public good and bilateral trade environments. Finally, we summarize the

findings of the paper and make some concluding remarks in Section 5. The proofs

are delegated to the Appendix.
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2 The Model

Consider a Bayesian mechanism design framework with n agents. The set of agents

is denoted by N = {1, ..., n}. Each agent has a type θi which is her private informa-

tion. We assume that each agent knows her own type and does not know the types

of the other agents. Each θi is independently drawn from cumulative distribution

function F i(.) on Θi = [θi, θ
i
] with 0 ≤ θi ≤ θ

i
< ∞. Types are drawn indepen-

dently across agents; that is, the θis are independent random variables. We denote

a generic profile of agent types by θ = (θ1, ..., θn) ∈ Θ ≡ ×Ni=1Θi. For any θ ∈ Θ, we

adopt the standard notation so that θ−i = (θ1, ..., θi−1, θi+1, ..., θn), and θ = (θi, θ−i)

where f(θ) =
∏N

i=1 f
i(θi). Let X be a finite set of possible nonmonetary decisions,

or allocations (e.g., X could be a subset of an Euclidean space and represent the

set of possible allocations of private and public goods).

Let ∆(X) be the set of probability distributions on X. A mechanism ζ =

(y, t) consists of an allocation rule y and a payment rule t. Let yx(θ) denote the

probability of choosing x ∈ X, given the profile of types θ ∈ Θ. A feasible allocation

rule (or social choice function) y : Θ → ∆(X) is a function from agents’ reported

types to a probability distribution over allocations such that
∑

x∈X y
x(θ) = 1 and

yx(θ) ≥ 0 for all θ ∈ Θ. We allow allocation rules to randomize over feasible

allocations. Let Y be the set of all possible allocation rules and Ω ⊆ Y be the set of

all feasible allocation rules. The payment rule t : Θ→ RN is a map from the agents’

reported types to monetary compensations where
∑N

i=1 t
i(θ) ≥ 0. This condition

(ex-post budget balance) requires that there is no outside source to finance the

compensations. Therefore, a mechanism cannot run a deficit.

The individual payoff function (or material utility) of an agent i given an allo-

cation rule y, and her monetary payment ti is

Πi(y, ti, θi) =
∑
x∈X

yx(θ)vi(x, θi)− ti

where vi(x, θi) is agent i’s valuation of allocation x which depends on her private

information. We assume that vi(x, θi) is differentiable, monotone increasing, and

convex in θi for all i and x ∈ X.

Beyond her individual payoff, agent i cares about the payoffs of others:

ui(y, t, θ) = ρiΠi + (1− ρi)Π

=
∑
x∈X

yx(θ)V i(x, θ, ρi) + ρi(

∑
j∈N t

j

N
− ti)−

∑
j∈N t

j

N
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where Π =
∑
j∈N Πj

N
is the average payoff in the population and V i(x, θ, ρi) =

ρivi(x, θi) + (1− ρi)
∑
j∈N vj(x,θj)

N
is the total value of allocation x for agent i . The

constant ρi ∈ [0, 1] is an agent-specific weighting factor showing each agent’s social

concerns. If ρi = 1, the agent has selfish preferences which do not directly depend

on the well being of others. If ρi < 1, the agent has altruistic preferences which

are increasing in the well being of others. Note that as ρi increases the degree of

altruism in preferences goes down and the agent gets a higher level of disutility

from paying more than the average total payment. If all agents are identical in

their social concerns ( ρi = ρj = ρ), and ρ = 0, the model is a common value set-

ting where full social preferences are in action and the society is homogeneous. If

ρ = 1, the model is equivalent to the standard mechanism design environment with

selfish agents. We assume that agents have identical social concerns to simplify the

analysis for the rest of the paper (ρi = ρj = ρ for all i, j ∈ N).1

We only consider direct mechanisms in which the set of reported types is equal

to the set of possible types in the rest of the paper. By the revelation principle, any

allocation rule that results from equilibrium in any mechanism is also an equilibrium

allocation rule of an incentive compatible, direct mechanism. Therefore, there is no

loss of generality in restricting our attention to these simple type of mechanisms.

Let U i(ζ, θi, si) be the interim expected utility of agent i when he reports si 6= θi,

assuming all other agents truthfully report their type. That is

U i(ζ, θi, si) = Eθ−i [u
i(y(si, θ−i), t(si, θ−i), θ)].

Denote U i(ζ, θi) ≡ U i(ζ, θi, θi). The ex-ante utility of agent i is

U i(ζ) = Eθ[u
i(y(θ), t(θ), θ)].

Define also the conditional expected payment function ai : Θi → R such that

ai(θi) = Eθ−i [t
i(θ)].

A mechanism is interim incentive compatible (IIC) if honest reporting of types

defines a Bayesian-Nash equilibrium. That is ζ is IIC if and only if U i(ζ, θi) ≥
U i(ζ, θi, si) for all i, si, θi. We call a mechanism interim individual rational (IIR)

if every agent wants to participate in the mechanism: U i(ζ, θi) ≥ 0 for all i, θi. A

mechanism is ex ante budget balanced (EABB) if a mechanism designer does not

1The model can also be extended to environments where agents are spiteful (ρ > 1).
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expect to pay subsidies to the agents, e.g., Eθ(
∑N

i=1 t
i(θ)) ≥ 0. A mechanism is

feasible if it satisfies IIC, IIR, and EABB.

A mechanism ζ is interim efficient (IE) if it is feasible and there is no other feasi-

ble mechanism ζ̂ such that U i(ζ̂ , θi) ≥ U i(ζ, θi) for all i, θi and U i(ζ̂ , θi) > U i(ζ, θi)

for some i and for all θi ∈ Θ̃i ⊂ Θi, where Θ̃i has strictly positive measure

relative to Θi. IE is an extension of efficiency to the environments with pri-

vate information. A mechanism is IE if there does not exist an alternative fea-

sible mechanism that interim Pareto-dominates it. Note that the idea of Pareto-

domination is applied to the expected utilities after the agents have learned their

types. IE mechanisms can also be represented as the solutions to a set of maxi-

mization problems. A mechanism ζ is an IE mechanism if and only if there exists

λ = {λi : Θi → R+}Ni=1 with
∫ θi
θi
λi(θi)dF i(θi) > 0 for some i, such that ζ maxi-

mizes
∑N

i=1

∫ θi
θi
λi(θi)U i(ζ, θi)dF i(θi) subject to ζ is feasible. Note that the weight

attached to an agent i can vary with her type.2 Thus, an IE mechanism maximizes

weighted sum of agents’ utilities subject to IIC, IIR, and EABB constraints.3

3 Results

Given welfare weights λ > 0, our main problem can now be stated as finding

mechanisms that maximize

N∑
i=1

∫ θ
i

θi
λi(θi)U i(ζ, θi)dF i(θi)

subject to IIC, IIR, EABB, and obvious quantity constraints.

We now proceed to characterize the complete set of interim efficient mechanisms.

We first start to reformulate the constraint set such that we can provide necessary

and sufficient conditions for IIC and IIR. The second step in the characterization

involves a general solution to the maximization problem with the constraints rewrit-

ten as described below. The constraints for IIC correspond to the first and second

order conditions of an individual optimization problem. Following the same idea

in Myerson (1981), we find the solution to the case where the second order IIC

2See Holmstrom and Myerson (1983).
3We could also use ex post budget balance condition. It turns out that EABB is equivalent to

ex post budget balance condition in our setting.
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condition is not binding (regular problems). Then, we provide a sufficient condi-

tion in which the solution to the regular problem coincides with the solution to

the original problem. The standard tools of mechanism design are used to get the

following preliminary results.

3.1 Preliminaries to the Main Results

IIC requires that it is a Bayesian equilibrium for each agent to report her type

truthfully, i.e., none of the agents can obtain strictly higher payoffs by deviating

individually. In our framework incentive compatibility can be characterized by

means of an envelope and a monotonicity condition as in standard mechanism design

problems. A similar result is also proved by Rochet (1987) for linear environments

with selfish preferences.

Lemma 1 A mechanism is IIC if and only if

(si − θi)× (Qi(si, ρ)−Qi(θi, ρ)) ≥ 0 for all si, θi ∈ Θi (1)

U i(ζ, θi) = U i(ζ, θi) +

∫ θi

θi
Qi(s, ρ)ds (2)

where

Qi(θi, ρ) ≡
∫

Θ−i

∑
x∈X

yx(θ)
∂V i(x, θ, ρ)

∂θi
dF−i(θ−i).

The first condition is the monotonicity condition which states that the expected

marginal total value of agent i in her own type, Qi(θi, ρ), should be monotone in-

creasing in her own private information. This implies that ∂Qi(θi,ρ)
∂θi

≥ 0. The second

condition is the envelope condition. The monotonicity condition has implications

only for allocation rules. Notice that the expected payment function ai is com-

pletely determined by a constant ai(θi) and the allocation rule y. The constant

of integration, U i(ζ, θi) is uniquely determined by N constants a(θ) and y for all

agents.

Now we can write expected budget surplus in an IIC mechanism using the result

above.

B(ζ) ≡
N∑
i=1

∫
Θ

ti(θ)dF (θ) =
N∑
i=1

∫
Θ

(ρti(θ) + (1− ρ)

∑
j t
j(θ)

N
)dF (θ)

=
N∑
i=1

(∫
Θ

∑
x∈X

yx(θ)V i(x, θ, ρ)dF (θ)− U i(ζ, θi)−
∫

Θi
[

∫ θi

θi
Qi(s, ρ)ds]dF i(θi)

)
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Using integration by parts,

=
N∑
i=1

∫
Θ

∑
x∈X

yx(θ)

(
V i(x, θ, ρ)− ∂V i(x, θ, ρ)

∂θi
1− F i(θi)

f i(θi)

)
dF (θ)−

N∑
i=1

U i(ζ, θi).

Let Φ(ζ, ρ) ≡
∑N

i=1

∫
Θ

∑
x∈X y

x(θ)
(
V i(x, θ, ρ)− ∂V i(x,θ,ρ)

∂θi
1−F i(θi)
f i(θi)

)
dF (θ). Notice

that if ζ is EABB then B(ζ) ≥ 0. This also implies the mechanism designer does

not expect to pay subsidies to the agents.

IIR requires that each type of each agent must be at least as well off by partici-

pating as they would be by not participating at the interim stage. We assume that

outside options are exogenously given and without loss of generality normalized to

zero. We next combine IIR and IIC to get a useful result for later.

Lemma 2 An IIC mechanism ζ is IIR if and only if for all i ∈ N , U i(ζ, θi) ≥ 0.

3.2 Interim Efficient Mechanisms

Welfare weights play an important role in our analysis. Before stating the main

characterization, the following definition will be useful in reformulating the original

problem.

Definition 1 If λ0i ≡
∫ θi
θi
λi(θi)dF i(θi) > 0, let Λi(θi) = 1

λ0i

∫ θi
θi
λi(s)dF i(s). If

λ0i = 0, let Λi(θi) = 0.

λ0i is agent i’s ex ante welfare weight relative to other agents. Λi(θi) is a relative

weight of agent i’s lower types given her private information.

Now we can provide our first characterization. This result implies that the

objective function can just be written as a function of utilities of the lowest types

U i(ζ, θi) and the allocation rule y. It does not depend on the transfers anymore.

Theorem 1 A mechanism ζ = (y, a) is IE if and only if there exists non-negative

type-dependent welfare weights, {λi}Ni=1, where
∑

i∈N λ
0i > 0, and N constants,

{ci(θi)}Ni=1, such that (y, {ci(θi)}Ni=1) solves,

maxy∈Ω

N∑
i=1

λ0i

[
U i(ζ, θi) +

∫ θ
i

θi
(
1− Λi(θi)

f i(θi)
)Qi(θi, ρ)dF i(θi)

]
(3)

subject to

Φ(ζ, ρ)−
N∑
i=1

U i(ζ, θi) ≥ 0 (4)
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U i(ζ, θi) =

∫
Θ−i

∑
x∈X

yx(θi, θ−i)V i(x, θi, θ−i, ρ)dF−i(θ−i)− ci(θi) ≥ 0 (5)

Qi(θi, ρ) monotone increasing for all i, θi. (6)

Following the same idea in Myerson (1981) we characterize the solution to the

problem in Theorem 1 for the case where monotonicity constraint is not binding.

In this case solution can be obtained by pointwise maximizing the integrand in

the objective function (3). Then we provide conditions under which the solutions

to this reduced problem satisfies the monotonicity constraint. When solutions to

the original problem and the reduced problem coincide, we refer to the problem as

regular.

Given non-negative type-dependent welfare weights, {λi}Ni=1, we can define the

Lagrangian function as

L(y, (ci(θi))Ni=1, γ, (µ
i)Ni=1) =

N∑
i=1

λ0i

[
U i(ζ, θi) +

∫ θ
i

θi
(
1− Λi(θi)

f i(θi)
)Qi(θi, ρ)dF i(θi)

]

+γ

[
Φ(ζ, ρ)−

N∑
i=1

U i(ζ, θi)

]

+
N∑
i=1

µi

(∫
Θ−i

∑
x∈X

yx(θi, θ−i)V i(x, θi, θ−i, ρ)dF−i(θ−i)− ci(θi)

)
.

The first-order conditions with respect to γ (EABB multiplier) and with respect to

µi (IIR multiplier) imply that

γ ≥ 0, B(ζ) ≥ 0 and γB(ζ) = 0,

µi ≥ 0, U i(ζ, θi) ≥ 0 and µiU i(ζ, θi) = 0 for all i ∈ N.

The first order condition with respect to ai(θi) yields −λ0i + γ − µi = 0. Then

γ ≥ λ0i for all i ∈ N . This implies the EABB constraint is always binding (γ > 0)

since there is i ∈ N such that λ0i > 0 and µi � 0 for all i ∈ N . The intuition

of this result is the following. We assumed that contributions in excess are not

socially valued. If the EABB is not binding, a redistribution of budget surplus

to the agents would result in an interim Pareto improvement. If IIR constraints

for the lowest types of agents with non maximal expected welfare weight is not

binding, redistribution of wealth to agents with maximal expected welfare weight

would increase the weighted welfare function. The following lemma summarizes the

discussion above.
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Lemma 3

N∑
i=1

λ0iU i(ζ, θi) = γ

N∑
i=1

U i(ζ, θi)

= γΦ(ζ, ρ).

Using the above result, the objective function (3) can be written as follows

N∑
i=1

[∫
Θ

∑
x∈X

yx(θ)

(
V i(x, θ, ρ)− ∂V i(x, θ, ρ)

∂θi
1− F i(θi)

f i(θi)

)
dF (θ)

+
λ0i

γ

∫
Θi

(
1− Λi(θi)

f i(θi)
)Qi(θi, ρ)dF i(θi)

]
=

N∑
i=1

∫
Θ

∑
x∈X

yx(θ)

[
V i(x, θ, ρ) +

∂V i(x, θ, ρ)

∂θi

(
F i(θi)− 1

f i(θi)
+
λ0i

γ

1− Λi(θi)

f i(θi)

)]
dF (θ).

When we substitute and rearrange terms, we get the following result. This result is

simplified reformulation of Theorem 1 for regular problems. The utilities of lowest

types U i(ζ, θi) are explicitly entered into the objective function and the constraints

of the maximization problem reduce to two constraints representing the EABB

constraint.

Theorem 2 For regular problems, there is a payment rule {ai}Ni=1 such that ζ =

(y, a) is IE if and only if there exists non-negative type-dependent welfare weights,

{λi}Ni=1 with
∑

i∈N λ
0i > 0, and γ ≥ λ such that y ∈ ∆(X) simultaneously solves

the following inequalities

max
y∈Ω

N∑
i=1

∫
Θ

∑
x∈X

yx(θ)
[
V i(x, θ, ρ) +

∂V i(x, θ, ρ)

∂θi

(
F i(θi)− 1

f i(θi)
+
λ0i

γ

1− Λi(θi)

f i(θi)

)]
dF (θ) (7)

0 ≤ Φ(ζ, ρ) (8)

0 = (γ − λ)Φ(ζ, ρ). (9)

3.3 Modified Virtual Valuations

In this section we show the effects of interdependent preferences in our setting. Let

W i(x, θ, ρ, λi) = V i(x, θ, ρ) +
∂V i(x, θ, ρ)

∂θi

(
F i(θi)− 1

f i(θi)
+
λ0i

γ

1− Λi(θi)

f i(θi)

)
. (10)
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We call W i(x, θ, ρ, λi) as the (modified) virtual valuation of agent i for allocation x

following Myerson (1981). Rather than directly working with total valuations,

interim efficient mechanisms use the agents’ total valuations suitably adjusted.

The virtual valuation for a given allocation is equal to the agent’s total valuation

for the allocation, V i(x, θ, ρ), with two adjustments that depend on the distribu-

tion of types, welfare weights, and social concerns of the agents. The first one,
∂V i(x,θ,ρ)

∂θi
F i(θi)−1
f i(θi)

, is due to the informational rent to be given for truthful revelation

of the agent’s private information. The second one is due to distortions arising

from redistribution of income (∂V
i(x,θ,ρ)
∂θi

λ0i

γ
1−Λi(θi)
f i(θi)

). Note that these adjustments

are weighted with the marginal total valuation of agent i for a given allocation and

hence virtual valuations also depend on the allocation.

3.4 A Sufficient Condition for Regularity

In this section we provide sufficient conditions under which the solution to the

regular problem coincide with the solution to the original problem in Theorem 1.

Substituting (10) into (7) gives us:

max
y∈F

N∑
i=1

∫
Θ

∑
x∈X

yx(θ)W i(x, θ, ρ, λi)dF (θ). (11)

The regular problem to find IE mechanisms can now be stated as (y, a) is an interim

efficient mechanism if and only if the allocation rule y ∈ ∆(X) simultaneously solves

(11), (8), and (9). Note that the payment rule is fully specified by the allocation

rule and exogenous constants.

The problem stated above has a simple solution defined by4

yx(θ, λ) =

{
1 if x = argmaxm∈X

∑N
i=1 W

i(m, θ, ρ, λi)

0 otherwise.
(12)

This implies an IE mechanism assigns probability one to an allocation with the

highest sum of modified virtual valuations. Note that to find the interim efficient

mechanism we use the minimum possible γ ≥ λ̄ such that (8) and (9) are satisfied.

This solution also provides an algorithm to find the interim efficient mechanisms.

Firstly, given welfare weights, set γ = λ̄ and find the allocation rule yx(θ, λ) for

4For simplicity, we assume that there are no allocations x, y, x 6= y such that∑N
i=1W

i(x, θ, ρ, λi) =
∑N

i=1W
i(y, θ, ρ, λi). We can also use a random tie-breaking rule.
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each θ ∈ Θ. If this solution satisfies (8) and (9) then the expected transfer functions

a(θ) are calculated using the formula in the proof of Theorem 2. Then, (y, a) is the

solution. If the solution does not satisfy the constraints, then for each γ > λ̄ find

the allocation rule. Then, find the minimum value of γ such that the allocation

rule yγ satisfies the constraints. Given the allocation rule, calculate the expected

transfer functions aγ as before. Then, (yγ, aγ) is the solution.

We now provide a condition under which the solution (12) and the condition

imply that the monotonicity constraint is satisfied.

Assumption 1 (a) W i(x, θ, ρ, λi) is non decreasing in θi for all i ∈ N , x ∈ X and

all θ ∈ Θ, and (b) ∂V i(x,θ,ρ)
∂θi

is non decreasing in x for all i ∈ N , all θ ∈ Θ, and all

x ∈ X.

Note that we did not make any assumption about how the total valuations

depend on the allocation up to now. Assumption 1 basically restricts the set of

admissible valuation functions and welfare weights such that the solution to the

reduced problem satisfies the monotonicity condition (1). Assumption 1(a) reduces

to a joint condition on priors F i, welfare weights and the curvature of the total

valuation functions. We already know by the initial assumption that ∂V i(x,θi,ρ)
∂θi

increases (decreases) when θi increases (decreases). However, the allocation might

also change as a result of increase in an agent’s signal. Note that the allocation

can not decrease due to Assumption 1(a). Assumption 1(b) guarantees that the

derivative of the total valuation functions ∂V i(x,θ,ρ)
∂θi

are also non decreasing in x.

For example, if priors are uniform on [0, 1], V i(x, θ, ρ) = x(ρθi + (1 − ρ)
∑
j∈N θj

N
),

and ρ = 0 then

W i(.) =

∑
j∈N θ

j

N
+

1

N
(θi − 1 +

λ0i

γ
(1− Λi(θi)).

So Assumption 1(a) requires ∂W i

∂θi
≥ 0. This is true if and only if λi(θi) ≤ 2γ for

all i ∈ N and all θi ∈ Θi. We know that γ ≥ λ and welfare weights are always

non-negative. Therefore, this condition is satisfied for all possible welfare weights.

For general priors and social concerns, this assumption requires

γ ≥ λi(θi)

2f i(θi)−
∂fi(θi)

∂θi
(F i(θi)−Λi(θi))

f i(θi)

.

This implies Assumption 1(a) may not be satisfied for all welfare weights with ar-

bitrary priors. We showed that with uniform priors the assumption can be satisfied

11



for all welfare weights and thus it is satisfied by all incentive efficient mechanisms.

Note also that the total valuation function satisfies Assumption 1(b).

Theorem 3 If each W i(.) and V i(.) satisfies Assumption 1, then the solution (12)

satisfies all constraints in Theorem 1.

4 Applications

Our characterization is general and can be applied to different economic settings.

In this section, we present the main intuition of the characterization by providing

simplified applications for both public and private goods environments.

4.1 Public Goods

There are N people who must decide on the level of a public good which is pro-

duced according to constant returns to scale. In addition, they must decide how to

distribute the production costs. Let X = {0, 1} denote the possible values of the

public good. The cost of producing the public good is equal to K. In our main

model, we assumed that social allocation is costless but it is easy to incorporate

the cost of social allocation to our model.

For this application we assume that the total valuation functions have the fol-

lowing form:

V i(x, θ, ρ) = x

(
ρθi + (1− ρ)

∑
j∈N θ

j

N

)
. (13)

This implies the utility function of agent i is

ui(y, t, θ) =
∑
x∈X

yx(θ)V i(x, θ, ρ) + ρ(

∑
j∈N t

j

N
− ti)−

∑
j∈N t

j

N
, (14)

where ρ ∈ [0, 1] is the measure of social concerns. If ρ = 1, the model is equivalent

to the standard public good environment where agents are selfish. If ρ = 0, the

model is a common values setting where full social preferences are in action and the

society is homogeneous (every agent has the same valuation for the public good).

If 1 > ρ ≥ 0, agents have interdependent preferences. Note that as ρ decreases the

degree of altruism in preferences goes up and the model converges to the full social

preferences setting.

12



For the regular case, given welfare weights λi : Θi → R+, an IE mechanism

satisfies:

max
y∈Ω

N∑
i=1

∫
Θ

(∑
x∈X

yx(θ)(W i(x, θ, ρ, λi)− K

N
x)

)
dF (θ) (15)

0 ≤ Φ(ζ, ρ)−
∫

Θ

K
∑
x∈X

yx(θ)xdF (θ) (16)

0 = (γ − λ)

[
Φ(ζ, ρ)−

∫
Θ

K
∑
x∈X

yx(θ)xdF (θ)

]
. (17)

Suppose IIR was not required. It is much easier to solve the problem without IIR

constraints. First-order conditions imply λ0i = γ = λ for all i ∈ N . Hence the

ex-ante welfare weights must all be equal. Otherwise, the solution does not exist,

since it is always possible to improve welfare by making arbitrarily large transfers

between agents with different welfare weights. The problem stated above has a

simple solution:

yx(θ, λ) =

{
1 if x = argmaxm∈X

∑N
i=1W

i(m, θ, ρ, λi)−Km
0 otherwise,

(18)

and the payment functions can be found using the formula in the proof of Theorem

2 after subtracting the expected cost of the public good from the constraint on the

sum of the expected payment of the lowest types of each agent.

The public good is produced if

N∑
i=1

θi + (ρ+
1− ρ
N

)
N∑
i=1

F i(θi)− Λi(θi)

f i(θi)
≥ K.

The first best decision is to produce the public good when
∑N

i=1 V
i(1, θ, ρ) =∑N

i=1 V
i(1, θ, ρ = 1) =

∑N
i=1 v

i(1, θ) =
∑N

i=1 θ
i ≥ K. Let Θe = {θ|

∑N
i=1 θ

i ≥ K}
and Θρ = {θ|

∑N
i=1 W

i(.) ≥ K}. Efficiency dictates that the public good pro-

vision does not depend on social concerns of the agents, ρ. In interim efficient

mechanisms, there are distortions from the first best due to informational rents,

the type-dependent welfare weights and the measure of social concerns. Note that

even though the sum of the valuations for the public good is independent of social

concerns of agents, interim efficient production decisions depend on the interdepen-

dence among preferences.

Suppose λi(θi) is decreasing for all i and θi (lower types are weighted more

heavily). This implies the aim of the planner is that agents valuing the public

13



good more should bear a larger share of the costs. Then,
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
<

0. This implies there is less production than the ex post efficient mechanisms

for all ρ since sum of the modified virtual valuations is less than the sum of the

valuations. Moreover, as ρ decreases, or the degree of altruism in the preferences

goes up, the public good is produced more often. That is, when higher types are less

heavily weighted than lower types, underproduction is a more efficient way to relax

incentive compatibility constraints than transfers. However, incentive compatibility

constraints are less binding as we converge to the full social preferences environment

(ρ decreases) and there is no need to relax the incentive compatibility constraints.

This leads to a relative increase in the production of the public good.

Now, suppose λi(θi) is increasing for all i and θi (higher types are weighted

more heavily). Then,
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
> 0. This implies there is more production

than the ex post efficient mechanisms for all ρ since sum of the modified virtual

valuations is more than the sum of the valuations. Moreover, as ρ decreases, the

public good is produced less often. It is also easy to see that if λi(θi) = c ∈ R+

for all i and θi, ex ante efficient production decision which are also interim efficient

correspond to the classical first best decision (or ex-post efficient allocation). The

following comparative statistics result directly follows from the above discussion.

Proposition 1 If the welfare weights are decreasing in type, the public good is

produced more often as the degree of altruism in preferences goes up.

Now suppose that IIR constraints are required. The main question is then

whether the individual rationality constraint will be binding or not for the agent

who is assigned the highest welfare weight. We know that individual rationality

constraints will be binding for all other agents since γ ≥ λ̄. Note that γ is found

using the algorithm in Section 3.4. Suppose γ > λ̄. This implies individual ratio-

nality constraints are binding for all agents. For this case, virtual valuations are

equivalent to

W i(θ, ρ, λi) =

(
ρθi + (1− ρ)

∑
j∈N θ

j

N
+ (ρ+

1− ρ
N

)

(
F i(θi)− 1

f i(θi)
+
λ0i

γ

1− Λi(θi)

f i(θi)

))
.

(19)

The public good is produced if

N∑
i=1

θi + (ρ+
1− ρ
N

)

(
N∑
i=1

F i(θi)− 1

f i(θi)
+
λ0i

γ

1− Λi(θi)

f i(θi)

)
≥ K. (20)

14



With IIR constraints, virtual valuations are lower for all agents. Hence the fre-

quency of interim efficient public good production is always lower with the con-

straints than without. This implies that in some cases it might be efficient to pro-

duce the public good but there might not be enough surplus to cover the incentive

costs without violating individual rationality constraints. Note that the adjustment

term, (ρ+ 1−ρ
N

)
(∑N

i=1
F i(θi)−1
f i(θi)

+ λ0i

γ
1−Λi(θi)
f i(θi)

)
, is always negative. If interim efficient

production occurs, then
∑N

i=1 θ
i > K. IE mechanisms do not produce the public

good when it is not optimal to produce the public good and these mechanisms may

not produce the public good when it is optimal to produce. However, the adjust-

ment term becomes smaller as the degree of altruism in the preferences goes up.

This implies agents earn less informational rents, the budget balance constraint is

relaxed and the constrained optimum is getting more efficient. Because it is easier

to satisfy individual rationality constraints with relatively more unselfish agents.

That is, public good provision increases as ρ decreases, and there will be fewer in-

formation states of the economy in which it is optimal to produce the public good

but the public good is not produced. Formally, Θe ⊇ Θρ′ ⊇ Θρ for all ρ, ρ′ ∈ [0, 1]

such that ρ > ρ′. Note that, inefficiency in public good production is the smallest

when full social preferences are in action. These observations lead to the following

result.

Proposition 2 Interim efficient public good provision increases with the degree of

altruism in preferences.

4.2 Bargaining: One Buyer and One Seller

There is a risk-neutral seller who wants to sell an indivisible object that she owns

and a risk-neutral buyer who wants to buy the object. The seller’s type is θs ∈
[θs, θ

s
], and the buyer’s type is θb ∈ [θb, θ

b
]. We assume that [θs, θ

s
] ∩ [θb, θ

b
] 6= ∅.

That is, there are gains from trade for some information states of the economy. A

nonmonetary decision may be represented by a vector x = (xs, xb), where xs = 1

if the seller keeps the good, xs = 0 if the seller sells the good, xb = 1 if the buyer

gets the good, and xb = 0 if the buyer does not get the good. The set of possible

allocations is then X = {(1, 0), (0, 1)}. Agent i’s individual payoff depends on the

decision rule y, her private information θi and her monetary transfer ti,

Πi(y, ti, θi) =
∑
x∈X

yx(θ)vi(xi, θi)− ti.

15



Beyond her individual payoff, agent i ∈ {b, s} cares about the payoff of the other

agent,

ui(y, t, θ) =
∑
x∈X

yx(θ)V i(x, θ, ρ)− ρti − (1− ρ)
ts + tb

2
.

For this application we assume that total valuation functions have the following

form:5

V i(x, θ, ρ) =

(
ρxiθi + (1− ρ)

xsθs + xbθb

2

)
.

If the parties do not reach an agreement, they get their outside options. The

seller’s outside option is U0s(θs) = 1+ρ
2
θs and U0b(θb) =

∫
Θs

1−ρ
2
θsdF s(θs) for the

buyer, the buyer’s expected value when he does not make any payments to the

seller and the seller keeps the good. Note that the interpretation of outside options

is not standard in our model. We could also set U0s(θs) = θs and U0b(θb) = 0. This

would imply interdependence between preferences are not observed if there is no

trade.

IIR requires an agent’s net utility given incentive taxes to be non-negative for

all of that agent’s types:

U i(ζ, θi)−U0i(θi) = U i(ζ, θi)+

∫ θi

θi
Qi(s, ρ)ds−U0i(θi) ≥ 0 for all i ∈M, θi ∈ Θi.

This is only true if

U i(ζ, θi) +minθi

[∫ θi

θi
Qi(s)ds− U0i(θi)

]
≥ 0.

It is easy to see that IIR constraint is binding for the lowest possible type of the

buyer and for the highest possible type of the seller. Note that for the buyer

individual rationality is satisfied if and only if U b(ζ, θb) ≥
∫

Θs
1−ρ

2
θsdF s(θs). For

the seller, individual rationality requires U s(ζ, θs)−
∫ θs
θs
Qs(a, ρ)da− 1+ρ

2
θ
s ≥ 0. The

expected surplus using our formulation in the paper can be written as

B(ζ) ≡
∑
i∈{b,s}

∫
Θ

∑
x∈X

yx(θ)

(
V i(x, θ, ρ)− ∂V i(x, θ, ρ)

∂θi
1− F i(θi)

f i(θi)

)
dF (θ)+

−U b(ζ, θb)− U s(ζ, θs).

5If ρ = 1, the model is equivalent to the original Myerson and Satterthwaite (1983) bargaining
problem with selfish agents.
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Repeating the same arguments, an interim efficient mechanism maximizes

max
y∈Ω

∑
i∈{b,s}

∫
Θ

[∑
x∈X

yx(θ)(V i(x, θ, ρ) +
∂V i(x, θ, ρ)

∂θi

(
F i(θi)− 1

f i(θi)
+ (21)

λ0i

γ

1− Λi(θi)

f i(θi)
+ (1− λ0i

γ
)
I i(θi)

f i(θi)

)]
dF (θ)

0 ≤ Ψ(ζ, ρ) (22)

0 ≤ γ − λ (23)

0 = (γ − λ)Ψ(ζ, ρ) (24)

where

I i(θi) =

 1 if θi < argminθi
[
U i(ζ, θi) +

∫ θi
θi
Qi(s, ρ)ds− U0i(θi)

]
;

0 if θi ≥ argminθi
[
U i(ζ, θi) +

∫ θi
θi
Qi(s, ρ)ds− U0i(θi)

]
and

Ψ(ζ, ρ) =
∑
i∈{b,s}

[∫
Θ

∑
x∈X

yx(θ)

(
V i(x, θ, ρ) +

∂V i(x, θ, ρ)

∂θi
F i(θi)− 1

f i(θi)

)
dF (θ) +

min
θi

(∫ θi

θi
Qi(s, ρ)ds− U0i(θi)

)]

=

∫
Θ

y(0,1)(θ)

[
θb − θs +

1 + ρ

2

(
F b(θb)− 1

f b(θb)
− F s(θs)

f s(θs)

)]
dF (θ).(25)

The modified virtual valuation of the buyer is:

W b(x, θ, ρ, λb) = V b(x, θ, ρ) +
∂V b(x, θ, ρ)

∂θb

(
F b(θb)− 1

f b(θb)
+
λ0b

γ

1− Λb(θb)

f b(θb)

)
,

and the modified virtual valuation of the seller is

W s(x, θ, ρ, λs) = V s(x, θ, ρ) +
∂V s(x, θ, ρ)

∂θs

(
F s(θs)

f s(θs)
− λ0s

γ

Λs(θs)

f s(θs)

)
.

An IE mechanism gives the good to the agent with the highest positive modified

virtual valuations. Trade will take place whenever the seller’s modified virtual

valuation is below the buyer’s modified virtual valuation. This implies trade occurs

if

θb − θs +
1 + ρ

2

(
F b(θb)− 1

f b(θb)
+
λ0b

γ

1− Λb(θb)

f b(θb)
− F s(θs)

f s(θs)
+
λ0s

γ

Λs(θs)

f s(θs)

)
≥ 0.
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The first best decision is to trade the good when θ ∈ Θe = {θ|θb ≥ θs}. Efficient

trade cannot occur with probability one in interim efficient mechanisms. There are

distortions from the first best due to informational rents, redistribution of income,

and our behavioral assumption. Note that efficient trade decisions do not depend

on the degree of altruism in preferences. However, interim efficient trade depends

on the interdependence between preferences.

With IIR constraints, modified virtual valuation of the buyer is lower and mod-

ified virtual valuation of the seller is higher than the case without IIR constraints.

Hence interim efficient trade occurs less often with the constraints than without.

It might be efficient to trade in some cases but there might not be enough surplus

to cover incentive costs without violating individual rationality constraints.

Suppose the priors are uniform on [0, 1]. Then trade occurs if and only if

θb − θs ≥ 1 + ρ

3 + ρ

(
1− λ0b

γ
(1− Λb(θb))− λ0s

γ
Λs(θs)

)
.

In the ex ante efficient mechanism, which is also interim efficient, λs = λb = 1,

trade occurs if and only if

θb − θs ≥ (1 + ρ)(γ − 1)

(3 + ρ)γ − (1 + ρ)
.

The probability of trade in an interim efficient mechanism can be higher or lower

than the ex ante efficient mechanism depending on welfare weights. Note that

the set of ex ante efficient mechanisms is a subset of the set of interim efficient

mechanisms. In the ex ante efficient mechanism the seller adjusts her total valuation

upward and the buyer adjusts her total valuation downward. They are willing not to

trade even if trade is beneficial to both parties to get more favorable total payoffs.

This may not be the case in interim efficient mechanisms depending on welfare

weights.

If we apply our algorithm from Section 3.4, we see that γ is positively corre-

lated with ρ. The following table, Table 1, summarizes the relationship among the

resource feasibility Lagrangian multiplier (γ), the degree of altruism ρ, and infor-

mation state of the economy θ = (θb, θs) for which trade occurs.

Note that the probability of ex ante efficient trade is equal to the probability of

efficient trade when ρ = 0. In this case agents only care about the total valuations

but do not care about the transfers, so the problem is equivalent to finding efficient
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ρ γ θb − θs ≥
0 1 0

0.3 1.15 0.08

0.6 1.3 0.17

1 1.45 0.25

Table 1: Relationship between ex ante efficient trade and the degree of altruism in

preferences.

mechanisms. This will not be true for all interim efficient mechanisms since welfare

weights might be type dependent. We can conclude from the table that the proba-

bility of trade decreases as ρ increases since there will be less (θs, θb) for which trade

occurs as ρ increases. This implies altruistic agents trade more often than selfish

agents. Moreover, selfish agents are more willing to risk losing beneficial trades to

get a more favorable payment than unselfish agents. The following result states

that this observation can easily be extended to all interim efficient mechanisms.

Proposition 3 Trade occurs more often as the degree of altruism in preferences

goes up.

The above result implies that there will be more information states of the econ-

omy (θ ∈ Θ) where it is interim efficient to trade as ρ decreases. Moreover, agents

do not trade when it is not optimal to trade (θb − θs < 0) and they may not trade

when it is optimal to trade (θb− θs ≥ 0). However, there will be fewer information

states of the economy where trade does not occur but trade is optimal as the degree

of altruism in the preferences increases. That is, Θe ⊇ Θρ′ ⊇ Θρ for all ρ, ρ′ ∈ [0, 1]

such that ρ > ρ′.

5 Concluding Remarks

In this paper, we have characterized interim efficient mechanisms for Bayesian en-

vironments with interdependent preferences. We mostly concentrated on regular

problems where we assumed that monotonicity constraint is not binding and pro-

vided a sufficient condition for regular problems. The extension of characterization

to irregular problems remains open. We also provided applications that show the

properties of these mechanisms for both public and private goods environments.
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Our initial intention was to extend our analysis to the case where the individuals

share prior claims to the objects (dissolving a partnership). In that case individual

rationality constraints are type specific and the determination of buyers and sellers

is endogenous. Moreover, individual rationality constraints bind in the interior and

this interior point (or region) is also endogenous. This creates difficulties in sepa-

rating virtual valuations from the allocation rule, and hence virtual valuations are

also endogenous. Then, our formulation does not work for this case. Our conjecture

is that the set of initial shares for which efficient dissolution is possible extends as

the degree of altruism in preferences goes up. Extending the formulation to this

problem is an open question. We did not have this problem in our formulation be-

cause individual rationality constraints are binding for the lowest or highest types

of agents for all incentive compatible mechanisms.

One possibility for future research is to consider a model where the social con-

cerns of agents are also private information. Then, types are multidimensional.

This extension appears to be a difficult open question since the problems with

multidimensional analysis are well known in mechanism design literature. Another

possibility for future research is to consider a mechanism design problem with Fehr

and Schmidt (1999) type of preferences where individuals are inequity averse. This

complicates the mechanism design problem since this type of preferences introduces

discontinuities.

The extension of our characterization to the Bayesian environments with private

social concerns will be a subject of our future research.
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6 Appendix

Proof of Lemma 1. (⇒) Let si > θi. IIC implies U i(ζ, θi) ≥ U i(ζ, θi, si) and

U i(ζ, si) ≥ U i(ζ, si, θi) where

U i(ζ, θi, si) = U i(ζ, si)−
∫

Θ−i

∑
x∈X

yx(si, θ−i)V i(x(si, θ−i), si, θ−i, ρ)dF−i(θ−i)

+

∫
Θ−i

∑
x∈X

yx(si, θ−i)V i(x(si, θ−i), θ, ρ)dF−i(θ−i)

and

U i(ζ, si, θi) = U i(ζ, θi)−
∫

Θ−i

∑
x∈X

yx(θ)V i(x(θ), θ, ρ)dF−i(θ−i)

+

∫
Θ−i

∑
x∈X

yx(θ)V i(x(θ), si, θ−i, ρ)dF−i(θ−i).

This implies Qi(si, ρ) ≥ U i(ζ,si)−U i(ζ,θi)
si−θi ≥ Qi(θi, ρ) and hence Qi(θi, ρ) is nonde-

creasing. Letting si → θi implies ∂U i(ζ,θi)
∂θi

= Qi(θi, ρ). Then U i(ζ, θi) = U i(ζ, θi) +∫ θi
θi
Qi(s, ρ)ds.

(⇐) Now suppose 1 and 2 hold. Then U i(ζ, si) − U i(ζ, θi) =
∫ si
θi
Qi(s, ρ)ds ≥

(si − θi)Qi(θi, ρ). This implies, repeating the construction backwardly in the nec-

essary part, U i(ζ, θi) ≥ U i(ζ, θi, si) and U i(ζ, si) ≥ U i(ζ, si, θi). �

Proof of Lemma 2. IIR is satisfied if and only if U i(ζ, θi) ≥ 0 for all i, θi. By IIC

U i(ζ, θi) = U i(ζ, θi) +

∫ θi

θi
Qi(s, ρ)ds ≥ 0 for all i ∈ N, θi ∈ Θi.

That is, it requires

minθi∈Θi

[
U i(ζ, θi) +

∫ θi

θi
Qi(s, ρ)ds

]
≥ 0,

⇔

U i(ζ, θi) +minθi∈Θi

[∫ θi

θi
Qi(s, ρ)ds

]
≥ 0⇔ U i(ζ, θi) ≥ 0 for all i ∈ N.

The other direction is trivial since V i(x, θi) is monotone increasing in θi. �

I first note the following result that will be used later.

21



Lemma 4 ∫ θ
i

θi
λi(θi)

(
U i(ζ, θi) +

∫ θi

θi
Qi(s, ρ)ds

)
dF i(θi)

=

λ0i

[
U i(ζ, θi) +

∫ θ
i

θi
(
1− Λi(θi)

f i(θi)
)Qi(θi, ρ)dF i(θi)

]
.

Proof of Lemma 4. By changing the order of integration we get:

LHS = λ0iU i(ζ, θi) +

∫ θ
i

θi
Qi(s, ρ)

[∫ θ
i

s

λi(θi)dF i(θi)

]
ds

= λ0i

[
U i(ζ, θi) +

∫ θ
i

θi
Qi(s, ρ)(1− Λi(s))ds

]

= λ0i

[
U i(ζ, θi) +

∫ θ
i

θi
(
1− Λi(θi)

f i(θi)
)Qi(θi, ρ)dF i(θi)

]
.

�

Proof of Theorem 1. Directly follows from Lemmas 1, 2, and 4. (4) is EABB,

(5) is IIR, and (6) is the first part of IIC. �

Proof of Lemma 3. Let λ = maxi∈N{λ0i}. Define also K = {k | λ = λ0k, ∀ k ∈
N}, the set of agents who have the highest ex ante welfare weight, and M =

{m | λ > λ0m, ∀ m ∈ N}, the set of agents whose welfare weights are lower than

the highest ex ante welfare weight, where N = K ∪M . There are two possible

cases:

Case 1: γ > λ. This implies for all i ∈ N , µi > 0 ⇒ U i(ζ, θi) = 0 ⇒ IIR

constraints are binding for all agents’ lowest types.

Case 2: γ = λ. This implies for each k ∈ K, γ = λ = λ0k ⇒ µk = 0 ⇒
Uk(ζ, θk) ≥ 0 and for each m ∈ M , γ = λ > λ0m ⇒ µm > 0 ⇒ Um(ζ, θm) = 0 ⇒
IIR constraints are binding for all agents’ lowest types in M and the constraints

are not binding for all agents in K.

From Case 1 and 2, if U i(ζ, θi) 6= 0 for some i ∈ M ⊆ N then for all i ∈ M

ex ante welfare weights are equal to γ = λ = λ0i. This implies
∑N

i=1 λ
0iU i(ζ, θi) =
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γ
∑N

i=1 U
i(ζ, θi) = γΦ(ζ, ρ). The second equality follows by EABB constraint which

is always binding. �

Proof of Theorem 2. It follows from Lemma 3 and the discussion for Case 1

and 2 as stated above. Suppose the type-dependent welfare weights are such that

λ0i = λ > λ0j for all j ∈ N\{i} and γ ≥ λ. The payment function (if ρ 6= 0) is

given by6:

∀ j 6= i, aj(θj) =

∫
Θ−j

∑
x∈X y

x(θ)V j(x, θ, ρ)dF−j(θ−j)−
∫ θj
θj
Qj(s, ρ)ds

ρ
, (26)

ai(θi) =

∫
Θ−i

∑
x∈X y

x(θ)V i(x, θ, ρ)dF−i(θ−i)− Φ(ζ, ρ)−
∫ θi
θi
Qi(s, ρ)ds

ρ
. (27)

We know that IIR constraint is binding for the lowest types of all −i. This implies∑
l∈N U

l(ζ, θl) = U i(ζ, θi) = Φ(ζ, ρ) since EABB is always binding. Then, ρai(θi) =∫
Θ−i

∑
x∈X y

x(θ)V i(x, θ, ρ)dF−i(θ−i) − U i(ζ, θi). By using the envelope condition,

we get the payment function of the agent with maximal welfare weight. This implies

agent i is the residual claimant. For other possible welfare weights, we will need

additional constants to find the payment rule. Suppose we are in Case 1. This im-

plies, Φ(ζ, ρ) = 0 from EABB and
∫

Θ−i

∑
x∈X y

x(θi, θ−i)V i(x, θi, θ−i, ρ)dF−i(θ−i) =

ci(θi) = ρai(θi) from IIR. Therefore, we can uniquely solve for the set of expected

payments of all agents’ minimum types. Suppose now we are in Case 2. The ar-

gument for each i ∈ M is similar to Case 1. On the other hand, for each i ∈ K
the IIR constraint may not be binding. Therefore, we need |K| constants to solve

for the payment function. Note that the agents with the maximal expected welfare

weight share the remaining surplus (or cost) to make the EABB constraint binding.

This implies agents in set K will be residual claimants. �

Proof of Theorem 3. The solution is constructed such that all constraints other

than monotonicity are satisfied. We only need to show that the solution satisfies

the monotonicity constraint. Suppose θi ≥ si, x = argmaxm∈X
∑N

i=1W
i(m, θ, ρ, λi)

and y = argmaxm∈X
∑N

i=1W
i(m, si, θ−i, ρ, λi). This implies x ≥ y by Assumption

6If ρ = 0, any appropriate incentive taxes that add up to zero will work since in this case
agents only care about the average payment and we know that budget is always balanced.
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1(a). By Assumption 1(b),

Qi(θi, ρ) =

∫
Θ−i

∑
x∈X

yx(θi, θ−i)
∂V i(x, θ, ρ)

∂θi
dF−i(θ−i) =

∫
Θ−i

∂V i(x, θ, ρ)

∂θi
dF−i(θ−i)

≥ Qi(si, ρ) =

∫
Θ−i

∂V i(y, si, θ−i, ρ)

∂si
dF−i(θ−i).

This implies Qi(θi, ρ) is monotone increasing. Note that if x = y, Qi(θi, ρ) is obvi-

ously monotone increasing since we initially assumed that the valuation functions

are monotone increasing in type for all agents. Therefore, the solution (12) satisfies

all constraints in Theorem 1. �

Proof of Proposition 1. Suppose the welfare weights are decreasing in type.

This implies
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
< 0. We know that the probability of public good

production (the ratio of type profiles in which public good is produced) is equal

to Prob(yx=1
ρ > 0) = Prob(θ|

∑N
i=1 θ

i + (ρ + 1−ρ
N

)
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
≥ K). Now

consider ρ̂ > ρ and θ where yx=1(ρ, θ) = 1. It is easy to see that Prob(yx=1
ρ > 0) ≥

Prob(yx=1
ρ̂ > 0) since there is ρ̂ such that

∑N
i=1 θ

i + (ρ + 1−ρ
N

)
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
≥

K ≥
∑N

i=1 θ
i + (ρ̂ + 1−ρ̂

N
)
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
. Note also that if yx=1(ρ, θ) = 0 then

yx=1(ρ̂, θ) = 0. Next consider ρ > ρ̃ and θ where yx=1(ρ, θ) = 0. Then Prob(yx=1
ρ̃ >

0) ≥ Prob(yx=1
ρ > 0) since there is ρ̃ such that

∑N
i=1 θ

i+(ρ̃+ 1−ρ̃
N

)
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
≥

K ≥
∑N

i=1 θ
i + (ρ + 1−ρ

N
)
∑N

i=1
F i(θi)−Λi(θi)

f i(θi)
. Note also that if yx=1(ρ, θ) = 1 then

yx=1(ρ̃, θ) = 1. The proof for the case of increasing welfare weights is also similar. �

Proof of Proposition 2. Given welfare weights and priors, let Θρ = {θ|
∑

jW
j(θ, ρ, λi) ≥

K} be the set of types where public good is produced by an IE mechanism ζ, given

(ρ, γ). Let Θρ′ = {θ|
∑

jW
j(θ, ρ′, λi) ≥ K} be the set of types where public good

is produced by ζ given (ρ′, γ′). Note that for all ρ∗ ∈ [0, 1] and all θ ∈ Θρ∗ ,∑N
i=1 θ

i ≥ K since efficiency, interim incentive compatibility, and interim individ-

ual rationality are incompatible. This implies the adjustment term in modified

virtual valuations is always negative. Suppose without loss of generality ρ′ < ρ.

We want to show that there are more information states of the economy where the

public good is produced as the degree of altruism in preferences goes up, Θρ′ ⊇ Θρ.

Suppose on the contrary there is θ such that θ ∈ Θρ and θ 6∈ Θρ′ . Then

N∑
i=1

θi + (ρ+
1− ρ
N

)

(
N∑
i=1

F i(θi)− 1

f i(θi)
+
λ0i

γ

1− Λi(θi)

f i(θi)

)
≥ K
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and
N∑
i=1

θi + (ρ′ +
1− ρ′

N
)

(
N∑
i=1

F i(θi)− 1

f i(θi)
+
λ0i

γ′
1− Λi(θi)

f i(θi)

)
< K.

This is only possible if γ′ > γ. We also know that γ ≥ λ from first-order conditions.

This implies

Ψ(ζ, ρ)−
∫

Θρ
KdF (θ) ≥ Ψ(ζ, ρ′)−

∫
Θρ′

KdF (θ) = 0

where

Ψ(ζ, ρ′) =

∫
Θρ′

(
N∑
i=1

θi + (ρ′ +
1− ρ′

N
)

N∑
i=1

F i(θi)− 1

f i(θi)

)
dF (θ).

Let, without loss of generality, Θρ = {θ|
∑

j θ
j > A(θ,K)} and Θρ′ = {θ|

∑
j θ

j >

B(θ,K)}. Since (ρ′ + 1−ρ′
N

)
∑N

i=1
F i(θi)−1
f i(θi)

> (ρ + 1−ρ
N

)
∑N

i=1
F i(θi)−1
f i(θi)

for all θ ∈ Θ,

B(θ,K) > A(θ,K). This implies if θ ∈ Θρ then θ ∈ Θρ′ , contradicting our initial

assumption. �

Proof of Proposition 3. Given welfare weights and priors, let Θρ be the set of

types where trade occurs given (ρ, γ) and Θρ′ be the set of types where trade occurs

given (ρ′, γ′). Let, without loss of generality, ρ′ < ρ (altruism in the preferences

increases). We want to show that Θρ′ ⊇ Θρ. Suppose on the contrary there exists

θ such that θ ∈ Θρ but θ 6∈ Θρ′ . (We know that either Θρ′ ⊇ Θρ or Θρ′ ⊆ Θρ.)

This implies

θb − θs +
1 + ρ

2

(
F b(θb)− 1

f b(θb)
+
λ0b

γ

1− Λb(θb)

f b(θb)
− F s(θs)

f s(θs)
+
λ0s

γ

Λs(θs)

f s(θs)

)
≥ 0

and

θb − θs +
1 + ρ′

2

(
F b(θb)− 1

f b(θb)
+
λ0b

γ′
1− Λb(θb)

f b(θb)
− F s(θs)

f s(θs)
+
λ0s

γ′
Λs(θs)

f s(θs)

)
≤ 0.

This is only possible if γ′ > γ ≥ λ. This implies Ψ(ζ, ρ′) = 0. Since ρ > ρ′ and

trade does not occur in ρ′, we have

θb− θs +
1 + ρ

2
(
F b(θb)− 1

f b(θb)
− F s(θs)

f s(θs)
) ≤ θb− θs +

1 + ρ′

2
(
F b(θb)− 1

f b(θb)
− F s(θs)

f s(θs)
) ≤ 0.

We know that trade occurs for θ in ρ. Hence,

Ψ(ζ, ρ) =

∫
Θρ

[
θb − θs +

1 + ρ

2

(
F b(θb)− 1

f b(θb)
− F s(θs)

f s(θs)

)]
dF (θ) ≤ Ψ(ζ, ρ′) = 0.

This is a contradiction since γ is chosen by the algorithm such that Ψ(ζ, ρ) ≥ 0. �
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