Click to Print This Page
Code IF 467
Term 201702
Title Decision, Psychology and Brain
Faculty Faculty of Engineering and Natural Sciences
Subject Interfaculty Course(IF)
SU Credit 3
ECTS Credit 6.00 / 6.00 ECTS (for students admitted in the 2013-14 Academic Year or following years)
Instructor(s) Kemal K?l?c -kkilic@sabanciuniv.edu,
Language of Instruction
Level of Course Undergraduate
Type of Course Click here to view.
Prerequisites
(only for SU students)
MATH203 NS201
Content

Many scientific fields such as neuroscience, psychology, operations research, management science have modeled, analyzed, and tried to understand how people make decisions, with various tools, techniques and approaches within their own conventional theoretical frameworks. Recent advances in technology have accelerated brain research, and have given the opportunity to experiment and question the theoretical frameworks related to decision making developed in various disciplines. In this regard, decision making has become of particular interest to scientific fields such as cognitive and behavioral neuroscience, cognitive psychology, computational sociology and neuroeconomics. In this course, the students will learn how to model realistically and consistently the basic elements of decision making, i.e., the value system and objectives , alternatives, uncertainties, and preferences, based on the mathematical frameworks provided by various fields such as economics, operations research, computer sciences, as well as cognitive, physiological, and behavioral neuroscience. In the course, some mathematical tools, techniques and approaches (e.g., decision trees, game theory, mathematical programming, modeling uncertainty and Bayes theorem, Bayesian learning, modeling of preferences and vNM utility theory, entropy, decision tree learning and artificial neural networks) which will provide an analytical framework for decision making an learning will be covered. Aside to these techniques findings from the recently growing fields such as neuroeconomics, behavioral economics and behavioral neuroscience (e.g., prospect theory, conditioning, reinforcement, reward and punishment, expectation of judgment and decision- making, experience and deferral) will also be discussed within the same framework. In the course neural processes and mechanisms of social and individual decision making, behavior and choice (e.g., reward perception, learning types, attention, memory, belief systems, interaction with motor processes, trust, cooperation, alturism, social behavior) will be addressed and supported by neuroethological comparisons.

Programme Outcomes
 
1 Develop and deepen the current and advanced knowledge in the field with original thought and/or research and come up with innovative definitions based on Master's degree qualifications
2 Conceive the interdisciplinary interaction which the field is related with ; come up with original solutions by using knowledge requiring proficiency on analysis, synthesis and assessment of new and complex ideas.
3 Evaluate and use new information within the field in a systematic approach.
4 Develop an innovative knowledge, method, design and/or practice or adapt an already known knowledge, method, design and/or practice to another field; research, conceive, design, adapt and implement an original subject.
5 Critical analysis, synthesis and evaluation of new and complex ideas.
6 Gain advanced level skills in the use of research methods in the field of study.
7 Contribute the progression in the field by producing an innovative idea, skill, design and/or practice or by adapting an already known idea, skill, design, and/or practice to a different field independently.
8 Broaden the borders of the knowledge in the field by producing or interpreting an original work or publishing at least one scientific paper in the field in national and/or international refereed journals.
9 Demonstrate leadership in contexts requiring innovative and interdisciplinary problem solving.
10 Develop new ideas and methods in the field by using high level mental processes such as creative and critical thinking, problem solving and decision making.
11 Investigate and improve social connections and their conducting norms and manage the actions to change them when necessary.
12 Defend original views when exchanging ideas in the field with professionals and communicate effectively by showing competence in the field.
13 Ability to communicate and discuss orally, in written and visually with peers by using a foreign language at least at a level of European Language Portfolio C1 General Level.
14 Contribute to the transition of the community to an information society and its sustainability process by introducing scientific, technological, social or cultural improvements.
15 Demonstrate functional interaction by using strategic decision making processes in solving problems encountered in the field.
16 Contribute to the solution finding process regarding social, scientific, cultural and ethical problems in the field and support the development of these values.
1 Understand the world, their country, their society, as well as themselves and have awareness of ethical problems, social rights, values and responsibility to the self and to others.
2 Understand different disciplines from natural and social sciences to mathematics and art, and develop interdisciplinary approaches in thinking and practice.
3 Think critically, follow innovations and developments in science and technology, demonstrate personal and organizational entrepreneurship and engage in life-long learning in various subjects.
4 Communicate effectively in Turkish and English by oral, written, graphical and technological means.
5 Take individual and team responsibility, function effectively and respectively as an individual and a member or a leader of a team; and have the skills to work effectively in multi-disciplinary teams.
1 Possess sufficient knowledge of mathematics, science and program-specific engineering topics; use theoretical and applied knowledge of these areas in complex engineering problems.
2 Identify, define, formulate and solve complex engineering problems; choose and apply suitable analysis and modeling methods for this purpose.
3 Develop, choose and use modern techniques and tools that are needed for analysis and solution of complex problems faced in engineering applications; possess knowledge of standards used in engineering applications; use information technologies effectively.
4 Ability to design a complex system, process, instrument or a product under realistic constraints and conditions, with the goal of fulfilling specified needs; apply modern design techniques for this purpose.
5 Design and conduct experiments, collect data, analyze and interpret the results to investigate complex engineering problems or program-specific research areas.
6 Knowledge of business practices such as project management, risk management and change management; awareness on innovation; knowledge of sustainable development.
7 Knowledge of impact of engineering solutions in a global, economic, environmental, health and societal context; knowledge of contemporary issues; awareness on legal outcomes of engineering solutions; understanding of professional and ethical responsibility.
1 Design, implement, test, and evaluate a computer system, component, or algorithm to meet desired needs and to solve a computational problem.
2 Demonstrate knowledge of discrete mathematics and data structures.
3 Demonstrate knowledge of probability and statistics, including applications appropriate to computer science and engineering.
1 Applying fundamental and advanced knowledge of natural sciences as well as engineering principles to develop and design new materials and establish the relation between internal structure and physical properties using experimental, computational and theoretical tools.
2 Merging the existing knowledge on physical properties, design limits and fabrication methods in materials selection for a particular application or to resolve material performance related problems.
3 Predicting and understanding the behavior of a material under use in a specific environment knowing the internal structure or vice versa.
1 Formulate and analyze problems in complex manufacturing and service systems by comprehending and applying the basic tools of industrial engineering such as modeling and optimization, stochastics, statistics.
2 Design and develop appropriate analytical solution strategies for problems in integrated production and service systems involving human capital, materials, information, equipment, and energy.
3 Implement solution strategies on a computer platform for decision-support purposes by employing effective computational and experimental tools.