Click to Print This Page
Code NS 101
Term 201701
Title Science of Nature I
Faculty Faculty of Engineering and Natural Sciences
Subject Natural Sciences(NS)
SU Credit 4
ECTS Credit 6.00 / 6.00 ECTS (for students admitted in the 2013-14 Academic Year or following years)
Instructor(s) ?nanc Adagideli adagideli@sabanciuniv.edu, Emrah Kalemci ekalemci@sabanciuniv.edu, Yuki Kaneko Go?us yuki@sabanciuniv.edu,
Detailed Syllabus
Language of Instruction English
Level of Course Undergraduate
Type of Course Click here to view.
Prerequisites
(only for SU students)
--
Mode of Delivery Formal lecture,Interactive lecture,On-line task/distance,Recitation,Group tutorial
Planned Learning Activities Interactive,Learner centered,Communicative,Discussion based learning,Simulation
Content

Observing and understanding the workings of nature(comrising the physical universe and living organisms)is fundamental to contemporary civilization.Technology begins with some understanding of how nature works.The natural sciences also provide a most versatile method of using the human intellect Instead of separate gateways to physics,chemistry of biology the science of Nature courses at Sabanc? Un?versity propose to selectively introduce some of the basic concepts of our knowledge of nature;to look at natural laws in their interconnectivity ;and to initiate an experience of the way science operates,sharing the method of scientific thinking with students.What are the ideas in science that would be most interesting,enjoyable or useful to know for any,college graduate?How do we probe a scientific question in practise? What constitutes an answer?What are some of the answers that we have -or don't have as yet?How do Newton's Laws of Motion work?What does it mean to have an electric or magnetic field in a vacuum?What is there in the universe?What happens when a system in equilibrium is slightly perturbed?What determines the size and structure of an atom?Why is there a Periodic Table?How does a chemical reaction proceed?What are some of the important molecules in living organisms,and how do they work?What is the structure of DNA and the mechanism of heredity?How do we analyze and determine symmetrical structures in nature,or the structures of molecules and crystals?How do populations of living things interact and change?What is biological evolution?What are the basic mechanisms for the emergence,evolution or extinction of species?What questions make up the current frontiers of science? Emphasis in the science of Nature courses will not be on conveying secondary fragments of knowledge,but on conveying to all students in both Faculties an overall sense of the way science looks at the world,at new problems and at new subjects,while making sure that students who way want to specialize in engineering or the natural sciences are equipped with the basic concepts and skills necessary for future work.Computer simulations are an integral part of the course ,requiring student interaction ,participation and feedback.This is complemented by hands -on laboratory experiments that will be important for highlighting pitfalls in the way of actual (as opposed to virtual)practice.In the last analysis,science is common sense; it is ''easy'' as common sense is easy;and it discovers a surprising display of beauty in nature.

Objective

Science of Nature courses aim to initiate a curiosity and desire for learning ?scientific thinking? in students and at the same time to introduce some of the basic concepts of physical, chemical and biological sciences in connection with questions concerning the universe, nature and our daily life. The NS 101 course consists of two modules ?(1) Are we alone in the universe? and ?(2) Is antibiotics resistance a big threat to the existence of humankind?? Scientific methodology and fundamental concepts in the physical, chemical, and biological sciences are introduced through an integrated approach in the framework of these questions.

Learning Outcome

Relate the wide range of scales involved in Nature to familiar objects, and explain in his/her own words how we can investigate the module questions using the Scientific method
Recognize Earth as a biosphere, and describe its position and motion in a larger structure such as the Solar system, an environment that hosts a habitable planet
Apply the concept of force and momentum to explain the motions of the planets and what holds the Solar system together, showing all the force and momentum vectors correctly
Explain how the solar system may have formed using the concepts of circular motion, energy, and angular momentum, and evaluate the uniqueness (or non-) of our solar system based on the formation theory
By providing supporting evidence, describe how molecules of life can be synthesized under conditions similar to those on early Earth
Relate various types of electromagnetic (EM) waves by giving daily-life examples and discuss how we can use the EM waves to search for extraterrestrial life
Discuss the seriousness of the antibiotic resistance problem, interpret parameters of population growth models and calculate bacterial growth
Relate the targets of antibiotics in the bacterial cell and the antibiotic resistance mechanisms to replication, transcription and translation of information encoded in the DNA
Relate the processes of passive (diffusive) and active transport to how drugs move in and out of the bacterial cell
Relate the effect of environmental conditions such as temperature on processes occurring at microscopic scale such as diffusion of drug molecules in bacteria. Describe shapes of molecules using simple models and calculate energies for stable conformation of molecules
Examine the three-dimensional structures of molecules relevant to the antibiotic resistance problem, classify their bond types and their interactions.
Analyze at atomic scale structures of a given target site and a drug to determine if interactions would be stable, and argue if changes on the binding interface, e.g. due to point mutations, would alter the outcome on the organism scale.
Evaluate the basic physics, chemistry and biology components of a case study problem from antibiotic resistance.

Programme Outcomes
 
Common Outcomes For All Programs
1 Understand the world, their country, their society, as well as themselves and have awareness of ethical problems, social rights, values and responsibility to the self and to others. 5
2 Understand different disciplines from natural and social sciences to mathematics and art, and develop interdisciplinary approaches in thinking and practice. 5
3 Think critically, follow innovations and developments in science and technology, demonstrate personal and organizational entrepreneurship and engage in life-long learning in various subjects. 5
4 Communicate effectively in Turkish and English by oral, written, graphical and technological means. 5
5 Take individual and team responsibility, function effectively and respectively as an individual and a member or a leader of a team; and have the skills to work effectively in multi-disciplinary teams. 5
Common Outcomes ForFaculty of Eng. & Natural Sci.
1 Possess sufficient knowledge of mathematics, science and program-specific engineering topics; use theoretical and applied knowledge of these areas in complex engineering problems. 4
2 Identify, define, formulate and solve complex engineering problems; choose and apply suitable analysis and modeling methods for this purpose. 4
3 Develop, choose and use modern techniques and tools that are needed for analysis and solution of complex problems faced in engineering applications; possess knowledge of standards used in engineering applications; use information technologies effectively. 4
4 Ability to design a complex system, process, instrument or a product under realistic constraints and conditions, with the goal of fulfilling specified needs; apply modern design techniques for this purpose. 2
5 Design and conduct experiments, collect data, analyze and interpret the results to investigate complex engineering problems or program-specific research areas. 3
6 Knowledge of business practices such as project management, risk management and change management; awareness on innovation; knowledge of sustainable development. 1
7 Knowledge of impact of engineering solutions in a global, economic, environmental, health and societal context; knowledge of contemporary issues; awareness on legal outcomes of engineering solutions; understanding of professional and ethical responsibility. 3
Common Outcomes ForFaculty of Arts & Social Sci.
1 Develop a thorough knowledge of theories, concepts, and research methods in the field and apply them in research design and data analysis. 4
2 Assess the impact of the economic, social, and political environment from a global, national and regional level. 1
3 Know how to access written and visual, primary and secondary sources of information, interpret concepts and data from a variety of sources in developing disciplinary and interdisciplinary analyses. 5
Common Outcomes ForSchool of Management
1 Demonstrate an understanding of economics, and main functional areas of management. 1
2 Assess the impact of the economic, social, and political environment from a global, national and regional level. 1
Assessment Methods and Criteria
  Percentage (%)
Final 27.5
Midterm 27.5
Exam 15
Participation 15
Homework 15
Recommended or Required Reading
Readings

Provided on NS101 SuCourse

Course Web SuCourse